UHECR propagation from Centaurus A

Sarka Wykes University of Manitoba Andrew Taylor, Martin Hardcastle, Michael Hillas in preparation San Vito di Cadore, 23 September 2016

Centaurus A

Adapted from Feain

Closest (3.8 ± 0.1 Mpc) radio galaxy, FR I class, hosted by massive elliptical NGC 5128, group member Centaurus group: ~ 100 dwarf galaxies (confirmed and candidates) Dwarf galaxies in general useful to trace matter (cosmological filaments)

3D structure (Crnojević+16; Müller+16)

Parkes+ATCA 1.4 GHz

jet ~ 4.5 kpc (X-rays) ~ 5 kpc (radio) phys.age ~ 2 Myr

 $P_{\rm I} \sim 1 \times 10^{43} \, {\rm erg \ s^{-1}}$ (current jet) $P_{\rm i} \sim 1 - 5 \times 10^{43} {\rm ~erg~s^{-1}}$ (pre-existing)

dust lane with starburst ~ 7 kpc phys. age ~ 60 Myr

parent elliptical ~12&3Gyr stars

inner lobes ~ 5.5 kpc phys.age ~ 2 Myr

Kraft, Hardcastle

Colombari

Gendler, R.

HST R. G

giant lobes ~ 280 kpc physical age ~ 560 Myr

manimuminimimum

eain-

Parkes+AT

Knotiness of X-ray jet

- Support for model with <u>discrete interaction sites</u>
- Possible <u>obstacles</u> in jet:
 - stars, planetary nebulae
 - gas/molecular clouds

- Alternative explanations of knots (in general):
 - variations in jet speed
 - recollimation shocks
 - plasma instabilities

Radio view of the jet:

 <u>Stationary and moving</u> <u>knots</u>; moving knots little X-ray emission

Jet-stellar wind interactions: basic model

Stand-off distance:

Distance from a star at which <u>momentum fluxes</u> from the stellar wind and surroundings match,

$$R_{0} = \left(\frac{Mv_{\rm w}}{4\pi (U_{\rm j}/c^{2}) v_{\rm j}^{2} \Gamma_{\rm j}}\right)^{1/2}$$

- zone 3: <u>very hot swept-up</u> jet medium; subsonic
- <u>termination shock:</u> <u>non-relativistic, weak</u>, $\mathcal{M} = v_w / c_s \sim 1.3$
- <u>bow shock</u>: <u>relativistic</u>, <u>weak</u>, $\mathcal{M} = \sqrt{2} \beta_j \Gamma_j \sim 1.3$ spectral index not simple to shock disc predict; $E_{max} = Z e B R \beta \Gamma_j$ does roughly apply

Bow shock development, 2D HD simulations

jet: electron-positron plasma moving at 2c/3 obstacle: 12 Gyr TRGB star ($\dot{M} = 4.3 \times 10^{-8} M_{\odot}/yr$; $v_w = 10$ km/s) 575 physical days into development

- Bow shock front: hyperbolic shape away from obstacle

- Thickness of bow shock region in steady state similar to stand-off distance

Jet mass fraction development, 2D HD

jet: electron-positron plasma moving at 2c/3 obstacle: 12 Gyr TRGB star ($\dot{M} = 4.3 \times 10^{-8} M_{\odot}/yr$; $v_w = 10$ km/s) 575 physical days into development

- Stellar material lost to the jet
- Wake shows von Kármán-like vortices; break-up of vortices prohibited in 2D

Principal results from previous work on jet-sw interactions in Centaurus A (Wykes+13,15a)

- Jet-stellar wind interaction model for <u>electron acceleration at</u> <u>bow shocks</u> (Fermi I-type acceleration)
 - produces X-rays
 - can <u>reproduce</u> combined diffuse- and knot <u>X-ray luminosity</u> of the whole jet
- Derived internal entrainment rate (mass-loss from 8 x 10⁸ jet-contained stars) of ~ 2.3 x 10⁻³ M_o yr⁻¹ implies substantial jet deceleration
- External entrainment (via turbulent jet boundary) plausible: solely ~ 4.7 x 10⁻⁵ M_o yr⁻¹
- Baryons in Centaurus A's jet essentially from mass loss by ~ 12 Gyr ($Z \sim 0.004$) and ~ 3 Gyr ($Z \sim 0.008$) AGB stars
- Composition of jet on kpc-scales largely solar-like with ⁴He, ¹⁶O, ¹²C, ¹⁴N and ²⁰Ne the key isotopes

Mass-loss rates in individual isotopes Based on <u>codes calculating nucleosynthetic yields</u> (e.g. Karakas 2010)

lsotope	Amount expelled (in M _/yr) by AGB stars		
	Age	12 Gyr	3 Gyr
	Metallicity	0.004	0.008
	Initial stellar mass	0.9 M _o	1.4 M _o
		75%	25%
¹Н	3	8.17 x 10 ⁻⁵	8.80 x 10 ⁻⁵
³Не	1	27 x 10 ⁻⁸	4.16 x 10 ⁻⁸
⁴ He	1	14 x 10 ⁻⁵	3.37 x 10 ⁻⁵
12C	2	.30 x 10 ⁻⁸	1.34 x 10 ⁻⁷
¹⁴ N	1	33 x 10 ⁻⁸	1.10×10^{-7}
¹⁶ O	8	8.28 x 10 ⁻⁸	4.70 x 10 ⁻⁷
²⁰ Ne	1	40 x 10 ⁻⁸	7.96 x 10 ⁻⁸
²² Ne	1	11 × 10 ⁻⁹	7.22 x 10 ⁻⁹
²⁴ Mg	4	.47 x 10 ⁻⁹	2.53 x 10 ⁻⁸
²⁶ Mg	6	5.74 x 10 ⁻¹⁰	3.82 x 10 ⁻⁹
²⁸ Si	5	5.67 x 10 ⁻⁹	3.21 x 10 ⁻⁸
³² S	8	8.10×10^{-9}	1.95 x 10 ⁻⁸
⁵⁶ Fe	1	02 × 10 ⁻⁸	5.75 x 10 ⁻⁸

Cosmic-ray energisation: jet

- <u>Diffusive shock acceleration</u> (Fermil)
 <u>e.g. jet-stellar wind</u>
 - Relatively fast at strong shocks, slower at weak shocks
 - Particle spectra around p = 2 at single, non-relativistic, strong, q-parallel shocks; flatter from ensemble of shocks
- Shear acceleration (Fermi I-like process) kpc jet boundaries
 - Relatively fast

- Particle spectra flatter than p = 2

- Magnetic reconnection (Fermi I-like process) small jet scales
 - Relatively fast
 - Particle spectra flatter than p = 2 (?)
- Stochastic acceleration (Alfvénic or magnetosonic turbulence)
 - Slow in general, relatively fast in the jet
 - No fundamental particle slope (depends on physical conditions at the source)

Hybrid models perfectly possible!

kpc jet

Cosmic-ray energisation: giant lobes

- <u>Amount of entrained material: seems large, but (volume, age</u> <u>lobes)!</u> → <u>density</u> ~ 1×10^{-8} cm⁻³ → <u>Alfvén speed</u> v_{r} ~ 0.08c
- \blacksquare Resonant acceleration time for particle of energy γ :

$$au_{\rm res} \simeq rac{\gamma mc}{ZeB} rac{c^2}{\upsilon_{\rm A}^2} rac{U_B}{U_{\rm res}}$$

- (Wykes+13) Interested in <u>highest energies that can resonate</u>: i.e.disregard $U_{\rm B}/U_{\rm res}$, estimate $\tau_{\rm res}$ only for particles with gyroradius ~ turbulent driving scale (30 - 100 kpc): 55 EeV: ¹²C: $\tau_{\rm res} \sim 5.5$ Myr, ¹⁶O: $\tau_{\rm res} \sim 4.1$ Myr
- Requirement for a relatively flat power law, as generally assumed for UHECRs: acceleration time ≤ diffusion time
- Constraints on turbulent scale, acceleration time, escape time and physical age of the giant lobes: only ⁹Be and heavier nuclei accelerated to ≥ 55 EeV regime

Propagation model

- Monte Carlo description of UHECR propagation (Taylor+15)
 - protons and nuclei propagated through CMB and CIB
 - energy losses via photodisintegration, pair production, photo-pion collisions, losses due to redshift
- Hadronic models QGSJET II-4, EPOS-LHC, Sybill 2.1
- Max ⁵⁶Fe energy at source 250 EeV (i.e. proton cutoff 9.6 EeV)
- Flux normalised to Auger data (so far)
- Effects of extragalactic magnetic fields (EGMFs)
 EGMF strength and coherence length are used to define scattering lengths. Particles then isotropically scattered each time they propagate a scattering length distance in the Monte Carlo simulation
 - fitting: B = 0 (simple ballistic model) and B = 1 nG
 - coherence length: 0.1 Mpc
 - turbulence slope: Kolmogorov
- Scanning over particle index

Propagation spectra: mixture of ⁴He, ¹⁶O, ²⁰Ne and ⁵⁶Fe ¹⁶O best fit at UHE; ²⁰Ne and ⁵⁶Fe hardly required at all

Propagation spectra: mixture of ⁴He, ¹²C, ¹⁶O and ²⁰Ne ¹²C best fit at UHE

¹²C spectrum break earlier than ¹⁶O (Lorentz factor effect) – makes larger fraction of ¹²C preferable in the admixture

Propagation spectra: mixture of ⁴He, ¹⁶O, ²⁸Si and ⁵⁶Fe ¹⁶O best fit at UHE; ²⁸Si and ⁵⁶Fe not required at all

Propagation spectra: mixture of ⁴He, ¹²C, ¹⁶O and ²⁸Si ¹²C best fit at UHE

¹²C spectrum break earlier than ¹⁶O (Lorentz factor effect) – makes larger fraction of ¹²C preferable in the admixture

Propagation spectra: mixture of ⁴He, ¹²C, ¹⁶O and ⁵⁶Fe

¹²C best fit at UHE; ¹⁶O some contribution

¹²C spectrum break earlier than ¹⁶O (Lorentz factor effect) – makes larger fraction of ¹²C preferable in the admixture

Interaction length (energy loss length)

¹²C relatively robust; ¹⁶O and ²⁰Ne relatively fragile at 100 EeV; robustness higher at lower energies

First prediction of composition of an <u>extragalactic jet on</u> <u>kpc scale:</u> <u>Composition of Centaurus A's jet largely solar-like,</u> originating from stellar mass-loss → seeds

Propagation: preliminary conclusions

- Centaurus A and/or other nearby sources well motivated as source of UHECRs by composition and spectral shape
- Best-fitting isotopes with maximum ⁵⁶Fe energy fixed at 250 EeV are ¹²C to ¹⁶O. Species too closely spaced in mass number for a clear preference for either ¹²C or ¹⁶O (or ¹⁴N)
- Best-fitting particle spectral index in the range 2.2 2.3, compatible with plausible acceleration scenarios at the source
- Flux normalisation and diffusion yet to be fully addressed