Evolved Pulsar Wind Nebulae as Sources of (Mostly Leptonic) Cosmic Rays

Yves Gallant

(collaborators: N. Bucciantini, R. Bandiera, E. Amato, S. Klepser, M. Renaud, H.E.S.S. Collaboration...)LUPM, CNRS/IN2P3, U. de Montpellier, FRANCE

Cosmic Ray Origin – beyond the standard models San Vito di Cadore, September 22, 2016

> Cosmic-ray positrons and PWNe PWN evolution and e^{\pm} energy losses PWN population seen in TeV γ -rays High-energy hadrons in PWNe

 $\mathrm{CR}\,e^\pm$ from PWNe

Yves Gallant San Vito, 22/9/2016

Cosmic-ray *e*⁺ Insses in PWNe TeV PWN population Hadrons in PWNe

Cosmic-ray positrons as new "messenger"?

- ► *PAMELA* (2009) measured positron fraction $e^+/(e^+ + e^-)$ increase with *E*, inconsistent with secondary propagation origin
- ► confirmed to higher E: Fermi-LAT (2012), AMS-02 (2013, 2014)

- ► tending to ~20% up to $(e^+ + e^-)$ steepening at $E \sim 1$ TeV?
- spectrum and positron fraction require **primary** e^{\pm} source
- ▶ purely SNR origin unlikely; DM signature? (\rightarrow M. Malkov)
- pulsars proposed as cosmic e[±] sources by Aharonian et al. (1995), Chi et al. (1996), Zhang & Cheng (2001)...

San Vito, 22/9/2016 Cosmic-ray e⁺ e[±] losses in PWNe TeV PWN population

 CB_{e}^{\pm} from PWNe

Yves Gallant

Primary e^{\pm} from Pulsar **Wind Nebulae**!

- although e⁺ created in magnetosphere, thought to be accelerated to E ≫ TeV at wind termination shock (but actual mechanism poorly understood; → M. Lemoine)
- high-energy e[±] are confined in PWN, cannot readily escape PWN & SNR and propagate as cosmic rays in the ISM; requires consideration of adiabatic and synchrotron losses during PWN evolution; full description very complicated

How bad can it be?

- here: quantify effect of adiabatic and synchrotron losses, assuming e[±] remain confined in PWN until it dissipates in ISM (i.e. neglect diffusive escape from PWN and SNR)
- build on recent modelling of PWN spectral evolution (Zhang et al. 2008, Gelfand et al. 2009, Tanaka & Takahara 2010+, Bucciantini et al. 2011, Torres et al. 2013+...)

 $CR e^{\pm}$ from PWNe

Yves Gallant San Vito, 22/9/2016

Initial PWN phases in composite SNRs

- ▶ PWN first expands in unshocked SN ejecta ("free expansion")
- four shocks: pulsar wind termination, PWN expansion, SNR reverse and forward shocks

(Gaensler & Slane 2006)

- reverse shock eventually contacts PWN at SNR center
- PWN is initially "crushed" by shocked ejecta pressure
- in spherically symmetric simulations (e.g. MHD by Bucciantini et al. 2003), several reverberations before slower, steady expansion

CR e^{\pm} from PWNe

Yves Gallant San Vito, 22/9/2016

Time evolution of PWN pressure (I)

▶ initial free expansion phase: $P_{\text{pwn}} \propto t^{-13/5}$ (constant \dot{E})

 $CR e^{\pm}$ from PWNe

Yves Gallant San Vito, 22/9/2016

Cosmic-ray e⁺ e[±] losses in PWNe TeV PWN population Hadrons in PWNe

- ► subsonic expansion phase, in pressure equilibrium with remnant in **Sedov** (then radiative) phase: $P_{\text{pwn}} = P_{\text{Sed}} \propto t^{-6/5}$
- particles injected at t < 30 kyr follow this evolution until $P_{pwn} \approx P_{ism}$: *relic* PWN

・ロト・国ト・モート ヨー うへの

Synchrotron losses : magnetic field evolution

• magnetic field and relativistic gas have same energy density behavior in expansion and compression \Rightarrow magnetic fraction η conserved (when radiative losses dynamically unimportant)

- $\eta = 0.03 (0.01, 0.1)$: typical value, e.g. median in models of 9 PWNe by Torres et al. (2014)
- ▶ peak B_{pwn} value after compression similar to that in young PWN, but acting over $t \sim 10^4$ yr...

CR e^{\pm} from PWNe

Yves Gallant San Vito, 22/9/2016

Evolution of e^{\pm} energy

- adiabatic and synchrotron losses (for pre-bow-shock phases)
- ▶ particles injected with $E \rightarrow \infty$ at log $t_{inj} = 1.5, 2, 2.5, \dots, 5$

$\operatorname{CR} e^{\pm}$ from PWNe

Yves Gallant San Vito, 22/9/2016

Bow-shock PWN phases

 pulsar motion becomes supersonic relative to hot interior (in a Sedov SNR) at

$$t_{\rm bow} = 32 \left(\frac{E_{\rm SN}}{10^{51} {\rm erg}}\right)^{1/3} \left(\frac{n_0}{1 \, {\rm cm}^{-3}}\right)^{-1/3} \left(\frac{V_{\rm PSR}}{400 \, {\rm km/s}}\right)^{-5/3} \, {\rm kyr}$$

► leaves SNR and forms bow-shock PWN in **ISM** at $t_{cross} = 2 t_{bow}$ (van der Swaluw et al. 1998)

▶ wind termination shock balance with ram pressure: $P_{\text{ts}} \approx \rho V_{\text{psr}}^2$

 $CR e^{\pm}$ from PWNe

Yves Gallant San Vito, 22/9/2016

Cosmic-ray e^+ e^\pm losses in PWNe TeV PWN population Hadrons in PWNe

Time evolution of PWN pressure (II)

- ► $t > t_{\text{bow}} \approx 30$ kyr: supersonic bow-shock PWN in (Sedov) SNR
- ► fresh particles injected at post-shock pressure (then expand)

adiabatic expansion (or compression) of relativistic gas:

$$P \propto n^{4/3} \quad \Rightarrow \quad \left(\frac{\gamma_{\rm inj}}{\gamma_f}\right) = \left(\frac{P_{\rm inj}}{P_{\rm ism}}\right)^{1/4}$$

► fast advection from high-*B* region \Rightarrow fewer radiative losses

 $\mathrm{CR}\,e^\pm$ from PWNe

Yves Gallant San Vito, 22/9/2016

Cosmic-ray e⁺ e[±] losses in PWNe TeV PWN population Hadrons in PWNe

- na c

Summary on PWNe as e^{\pm} sources

- cosmic-ray positrons can be created in pulsar magnetospheres, then accelerated and confined in Pulsar Wind Nebulae
- ▶ we quantify the effect of adiabatic and synchrotron losses, assuming good e[±] confinement (late escape into the ISM)
- ► compression phase burns off all earlier e[±] to E_f ≤ 50 GeV : only late PWN phases contribute to high-energy CR e[±]
- Synchrotron losses less critical for bow-shock phases: higher post-shock B, but rapid advection (→ Blasi & Amato 2010)
- Caveats: parameter uncertainties, e.g. η; compression burn avoided if e[±] escape PWN before
- further observational and theoretical studies of *late-phase* (compressed and bow-shock) PWNe will help clarify issues
- combination of γ-ray (IC) and synchrotron morphologies can help disentangle spatial extent of e[±] and B

 $\operatorname{CR} e^{\pm}$ from PWNe

Yves Gallant San Vito, 22/9/2016

Cosmic-ray e^+ e^\pm losses in PWNe TeV PWN population Hadrons in PWNe

TeV (Very-High-Energy) γ -ray astronomy

- GeV (High-Energy) γ -rays with satellites (e.g. *Fermi*-LAT)
- at high E_{γ} , limited by calorimeter depth and collecting area
- TeV: use Earth's atmosphere as detector, through Cherenkov light from electromagnetic shower (on dark, moonless nights)
- past decade(+) : current generation of *Imaging Atmospheric* Cherenkov Telescope (IACT) experiments
- ▶ large mirrors, fine pixels, stereo technique \Rightarrow high sensitivity

HESS-II IACT system (Namibia)

- ► HESS-I: 4 mirrors of 12 m diameter; HESS-II: +28 m-diameter
- ▶ similar principles: MAGIC-II (Canary Isl.), VERITAS (Arizona)

 $CR e^{\pm}$ from PWNe

Yves Gallant San Vito, 22/9/2016

Cosmic-ray e^{\pm} e^{\pm} losses in PWNe TeV PWN population Hadrons in PWNe

Galactic TeV γ -ray sources and PWNe

- ► HESS Galactic plane survey : longitudes $\ell \approx +65^{\circ}$ to -110°
- ▶ long-term, multi-stage survey (2004–2012); highly non-uniform
- ▶ in time, strategy to achieve more uniform minimal sensitivity

HESS excess map (Donath et al., H.E.S.S., 2015 ICRC)

- currently $\gtrsim 100$ Galactic TeV sources known (78 in HGPS)
- ~30% identified as pulsar wind nebulae (PWNe) or candidates (H.E.S.S PWN population paper *submitted*; here preliminary results)

 $CR e^{\pm}$ from PWNe

Yves Gallant San Vito, 22/9/2016

Cosmic-ray e^{\pm} e^{\pm} losses in PWNe TeV PWN population Hadrons in PWNe

TeV γ -ray luminosity distribution of PWNe

► PWN TeV luminosities $L_{\gamma} = 4\pi D^2 F_{1-10 \text{ TeV}}$, plotted against (current) pulsar spin-down energy loss \dot{E}

- little correlation with E, unlike L_X (Grenier 2009, Mattana+ 2009)
- ► add HESS GPS upper limits ⇒ faintening trend significant (Klepser et al. 2016; H.E.S.S., submitted)
- TeV γ-rays reflect history of injection since pulsar birth, whereas X-rays trace recently injected particles

Yves Gallant San Vito, 22/9/2016

PWN magnetic evolution and L_X/L_{TeV}

- ▶ naive interpretation of L_X/L_{TeV} suggests *B* decrease with age
- ► difference of electron lifetime also plays a role (for B < 30µG, more pronounced as B decreases)</p>
- Torres et al. (2014) model young TeV-detected PWNe [see also Tanaka & Takahara (2010,2011), Bucciantini et al. (2011), ...]
- ▶ Crab, G0.9+0.1, G21.5-0.9, MSH 15-52, Kes 75, ..., modelled with broken power-law injection, 1.0 < p₀ < 1.5, p₁ = 2.2-2.8

 \blacktriangleright L_X/L_γ ratio evolution dominated by *B*-field decrease with age

main target photons for Inverse Compton are Galactic far-IR

 $CR e^{\pm}$ from PWNe

Yves Gallant San Vito, 22/9/2016

PWN TeV size evolution

significant trend of expansion with characteristic age

(Klepser et al. 2016; H.E.S.S., submitted) CBe^{\pm} from PWNe

Yves Gallant

San Vito, 22/9/2016

TeV PWN population

 consistent with PWN supersonic "free" expansion initially, followed by slower subsonic expansion (after reverse shock "informs" PWN about surrounding medium)

・ロト・西ト・西ト・日下 ひゃく

Galactic distribution of TeV PWNe

- with simulated SNR distribution (using Cordes & Lazio 2002)
- PWNe trace recent massive star formation (spiral arms)

CR e^{\pm} from PWNe Yves Gallant

San Vito, 22/9/2016

- ► HESS GPS detectability quite good to Scutum-Crux (Centaurus) arm
- deficit of TeV-emitting PWNe in Sagittarius-Carina arm?
- ▶ PWNe in outer Galaxy (Vela X, 3C 58...) have low luminosities
- \Rightarrow correlation of L_{TeV} with ambient (far-IR) photon density?

Older, "offset" PWNe

► TeV emission from the Vela X nebula (HESS 2006)

 $\operatorname{CR} e^{\pm}$ from PWNe

Yves Gallant San Vito, 22/9/2016

- IC emission ∝ (approximately uniform) target photon density
 ⇒ direct inference of spatial distribution of electrons
- fainter emission from whole radio nebula (HESS 2012)
- ► compact X-ray nebula not conspicuous in TeV γ-rays ⇒ torii and jets bright in X-rays because of higher magnetic field
- source offset from pulsar position; not due to pulsar motion
- two TeV PWNe in Kookaburra, and HESS J1356–645 are in same category (though no SNR shells)

TeV PWN offsets vs. age

(Klepser et al. 2016; H.E.S.S., submitted)

CR e^{\pm} from PWNe

Yves Gallant San Vito, 22/9/2016

- ▶ older TeV PWNe have large offsets
- ► cannot be explained by typical pulsar proper motions (observed distribution implies v_⊥ < 500 km/s for most)</p>
- suggests alternative asymmetric PWN "crushing" scenario...

PWNe in older composite SNRs

- reverse shock eventually contacts PWN at SNR center
- PWN is initially "crushed" by shocked ejecta pressure
- in spherically symmetric simulations (e.g. van der Swaluw et al. 2001), several reverberations before slower, steady expansion

- in more realistic 2D, Rayleigh-Taylor instabilities can mix plerion and ejecta (Blondin, Chevalier & Frierson 2001)
- asymmetries in medium can shift or "offset" PWN from pulsar
- eventually settles to "subsonic" expansion inside Sedov-phase remnant (e.g. van der Swaluw et al. 2001)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathrm{CR}\,e^\pm$ from PWNe

Yves Gallant San Vito, 22/9/2016

Summary on TeV properties of PWNe

 H.E.S.S. Galactic Plane Survey yields new inferences on the population of Pulsar Wind Nebulae in TeV γ-rays

PWN TeV γ -ray luminosities

- weak but significant decreasing trend with pulsar *E* or age (in contrast to X-ray synchrotron luminosity, from shorter-lived electrons)
- often dominated by inverse Compton on ambient far-IR photons
- PWNe more readily detected in inner than outer Galaxy

TeV PWN sizes and offsets

- clearly resolved trend of PWN expansion with age
- older PWNe are offset, more than due to pulsar velocities
- plausibly due to "crushing" by asymmetric reverse shock
- implications for late evolution and bow-shock stage onset?

 $\mathrm{CR}\,e^\pm$ from PWNe

Yves Gallant San Vito, 22/9/2016

Accelerated hadrons in Pulsar Wind Nebulae

- for one sign of Ω B_{*}, ions (Fe) can be extracted from neutron star surface at polar caps
- ion component in relativistic wind generally minor by number, but can be dominant in energy (depending on *multiplicity*)
- Horns et al. (2006) proposed dominantly hadronic TeV γ-ray emission in Vela X
- but required density unrealistically high (LaMassa et al. 2008)

prediction of hadronic scenario: accompanying neutrinos

- Di Palma, Guetta & Amato (2016) predicted neutrino flux for ~30 PWNe and candidates, based on TeV γ-ray flux
- Vela X and MSH 15-52 predictions near IceCube upper limits
- Crab dominantly leptonic; KM3Net could constrain "cold" or power-law wind ions

CR e^{\pm} from PWNe

Yves Gallant San Vito, 22/9/2016

Cosmic-ray e^+ e^\pm losses in PWNe TeV PWN population Hadrons in PWNe

(Hadronic) Cosmic Rays from PWNe?

- ▶ nuclei (*Fe*) from neutron star can be accelerated to high energies
- but number of such nuclei limited to Goldreich-Julian flux \Rightarrow cannot account for bulk of Galactic cosmic rays $\lesssim 10^{16}$ eV
- PWN evolution yields very hard spectrum $(dN/dE \propto E^{-1})$
- best model from Bednarek & Bartosik (2004): dashed line
- predicts increasingly heavy composition above \sim 3 PeV knee

- ▶ possible origin for $\sim 100 \text{ PeV}$ "second knee" component
- *Caveat:* depends sensitively on distribution of birth periods P_0
- **UHECRs** for $P_0 \sim 1$ ms (Blasi et al. 2000; \rightarrow M. Lemoine)
- *Caveat:* no evidence for (non-recycled) pulsars with $P_0 \leq 10 \text{ ms}$ (Perna et al. 2008; Medvedev & Poutanen 2013)

 CB_{e}^{\pm} from PWNe Yves Gallant

San Vito, 22/9/2016

Hadrons in PWNe

白卜(圖卜(圖卜(圖卜)圖)

(ь)

 $\operatorname{CR} e^{\pm}$ from PWNe

Yves Gallant

San Vito, 22/9/2016

Cosmic-ray e^+ e^\pm losses in PWNe TeV PWN population Hadrons in PWNe

Supplementary slides

▲□▶▲□▶▲□▶▲□▶ = のへで

Primary e^{\pm} from pulsars?

- copious e^{\pm} production in pulsar magnetospheres (Sturrock 1970)
- proposed as cosmic e^+ sources by several authors:

dramatic increase in interest (ADS citations) since 2009!

- more recent studies: Grimani (2004, 2007), Büsching et al. (2008), Hooper et al. (2009), Delahaye et al. (2010)...
- dominant local contribution from Geminga, PSR B0656+14?
- source spectrum of e⁺ for propagation mostly based on purely magnetospheric considerations...

CR e[±] from PWNe Yves Gallant San Vito, 22/9/2016

Hadrons in PWNe

PWN model assumptions and parameters

 model PWN as isobaric bubble of relativistic e[±] and B (until late, bow-shock phases)

Pulsar wind

- injection of broken power-law spectrum of e[±], with γ_{break}, low and high spectral indices p₁ and p₂ independent of t
- constant magnetic energy fraction injected in nebula, $\eta \ll 1$
- ▶ wind power approximated as constant, $\dot{E} \approx 10^{38}$ erg/s, during free-expansion phase (dynamically unimportant thereafter)

Supernova remnant

- uniform ejecta, with $M_{\rm ej} = 5M_{\odot}$ and $E_{\rm ej} = 10^{51} \, {\rm erg}$
- expanding in uniform interstellar medium, $n_{ism} = 1 \text{ cm}^{-3}$

Pulsar birth velocity

 assume typical pulsar 3D velocity V_{psr} = 400 km/s (e.g. Hobbs et al. 2005, Faucher-Giguère & Kaspi 2006) Yves Gallant San Vito, 22/9/2016

 CB_{e}^{\pm} from PWNe

Cosmic-ray e^+ e^{\pm} losses in PWNe TeV PWN population Hadrons in PWNe

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

TeV morphology: composite SNR evolution

- ▶ pulsars are born in (core-collapse) supernovae (type II / Ib,c)
- Crab Nebula unusual in that SN remnant shock not detected : purely "plerionic" (center-filled) SNR
- more generally, PWNe inside classical, shell-type SNR : "composite" SNR

X-ray (Chandra) images

G 11.2–0.3

G 21.5–0.9

Kes 75

- thermal X-ray emission from shocked supernova ejecta
- non-thermal (synchrotron) emission near two acceleration sites :
 - blast wave of initial explosion : SNR shell (forward shock)
 - pulsar (wind termination shock) : pulsar wind nebula

 $CR e^{\pm}$ from PWNe

Yves Gallant San Vito, 22/9/2016

Cosmic-ray e^+ e^\pm losses in PWNe TeV PWN population Hadrons in PWNe