<u>A EUSO-like experiment as a precursor of a</u> <u>ultra-high energy neutrino Space</u> <u>Observatory</u>

Piero Spillantini INAF and ASI, Roma, Italy

EUSO Approach

BUSO : Extreme Universe Space Observatory -

Fig. 2.1 – Artist view of the **EUSO** concept. The shower development occurs in the atmosphere layers below 30-40 km a.s.l.; the isotopic fluorescence emission is proportional at any depth to the number of 2¢harged particles (mainly electrons) present in the shower front: $N_e \approx E_{eV} / (1.4 \times 10^9)$. The UV yield is \approx 4 photons per meter of electron track, almost independent from air pressure and temperature.

The EUSO program Ultra-High Energy cosmic rays from space

- 1. EUSO-TA: Ground detector installed in 2013 at Telescope Array site: currently operational
- 2. EUSO-BALLOON: 1st balloon flight from Timmins, CA (French Space Agency) Aug 2014; 2nd flight: 2016, NASA Ultra long duration flight: 2017
- 3. MINI-EUSO (2017): Precursor from International Space Station (ISS: 30kg 2017). Approved by Italian and Russian Space agencies
- 4. K-EUSO (2019 JFY): ISS Approved by Russian Space Agency

The most complete work was (@<2004)

"Ultra-High Energy Neutrino Fluxes and Their Constraints"

(Kalashek, Kuzmin, Semokov, Sigl)

[arXiv:hep-ph/0205050 v3 13 Dec 2002]

[Model consistent with gamma's and UHECR data (Fly'sEye, Haverah Park, Yakytsk, AGASA)]

APS Neutrino Study:

.

Report of the Neutrino Astrophysics and Cosmology Working Group

(29 October 2004)

• We strongly recommend the development of experimental techniques that focus on the detection of astrophysical neutrinos, especially in the energy range above 10^{15} eV.

generation detector should be to increase the sensitivity by factor of 10, which may be adequate to measure the energy spectrum of the expected GZK (Greisen-Zatsepin-Kuzmin) neutrinos, produced by the interactions of ultra-high energy cosmic ray protons with the cosmic microwave background.

Is it possible to increase the number of detected neutrino events?

(EUSO-like from ISS)

Decrease the energy threshold (5 x 10¹⁹eV → 10¹⁸eV) by improving the sensor efficiency (0.20 → 0.50) x 1.5 by improving the light collection (pupil Ø 2m → 6m) x 9 (what implies reflective systems and modularity)

-Increase the target volume

.

-by increasing the FOV ($60^\circ \rightarrow 140.8^\circ$) (x 90)

but limited to $\cong 90^{\circ}$ by attenuation by air and by distance $\propto 3$

	<u>One optical</u>	<u>system</u>					
	<u>(EUSO li</u>	<u>ke)</u>	<u>Multi-mirror</u>				
H (km)	400)		400			
Total FoV (°)	60 → 90						
Radius on ground (km)	235			400			
Area on ground (10 ³ km ²)	173	}		503			
Target volume (km ³)	1730)		5030			
Pixel on ground (km * km)	0.8 x (0.8		0.8x0.8			
number of pixels) (.8x.8 km2)	270	k	786k				
Pupil diameter (m)	[/] 2.0	2.0	-≯ 4.0	6.0	10.0		
Photo detection efficiency	20%	50%	50%	50%	50%		
E threshold (EeV)	50	30	8	3	1.2		
Proton events/year,							
GKZ + uniform source distrib.	1200	4000	35k	300k	2000k		
with E _p >100 EeV)	100	100	290	290	290		
Neutrino events per year (≈ min)	0.2	0.4	1.5	4.5	10		
Neutrino events per year (≈ Max)	4	6	12	14	18		

After 2004: new data:

- GZK confirmed + (?) primary UHECR heavier than p (?)

- Fermi-LAT

Ahlers et al. bestfit, consistent with HiRes spectrum and Fermi-LAT diffuse gamma's <u>'GZK neutrinos after Fermi-LAT diffuse photon flux measurement'</u> M.Ahlers et al., Astropart. Phys. 34, 106 (2010)

Ahlers and Halsen updates of lower limits (normalization to Auger data) <u>'Minimal Cosmogenic Neutrinos' arXiv:1208.4181v1, 21 Aug 2012</u>

neutrino fluxes (by different nuclei)

21/9/16

<u>One o</u>	ptical system	<u>1</u>	<u>Multi-System (≅3 systems FoV≈20°)</u>					
<u>(E</u>	USO like) Mult			<u>Multi-mi</u>	mirror			
H (km)	400		400		800	1200		
Total FoV (°)	60		90		90	90		
Radius on ground (km)	235		400		≅ 800	≅ 1200		
Area on ground (10 ³ km ²)	173		503		≅ 2000	≅ 4500		
Target volume (w.e. km ³)	1730		5030		≅ 20000	≅ 45000		
Pixel on ground (km x km)	0.8 x 0.8		0.8x0.8		0.8x0.8	0.8x0.8		
number of pixels) (.8x.8 km²)	270k		786k		≅ 3000k	≅ 7000k		
Pupil diameter (m)	2.0	4.0	6.0	10.0	12	18		
Photo detection efficiency	50%	50%	50%	50%	50%	50%		
E threshold (EeV)	30	8	3	1.2	3	3		
Proton events/year,								
GKZ + uniform source distrib.	4000	35k	300k	2000k	1200K	2700k		
with E _p >100 EeV)	100	290	290	290	1180	2600		
Neutrino events per year (≈ min)	0.4	1.5	4.5	10	18	40		
Neutrino events per year (≈ Max)	6	12	14	18	56	126		
Neutrino events per year (bestfit)	0.05	0.3		2.5	4	9		
Neutrino events per year (px100%)	0.002	0.035	0.15	0.5	0.6	1.3		
Neutrino events per year (px10%)	-	0.0025	0.015	0.08	0.06	0.13		
Neutrino events per year (px1%)	-	0.0002	0.003	0.025	0.012	0.027		
21/9/16						20		

A proposed 5 m EPD mirror system

INO

Design of a mirror optics, based on the Schmidt camera principle This is the only design allowing wide FOV, up to $\approx 50^{\circ}$, with just 2 optical elements

Figure 2 - 3D rendering of the telescope layout

Active thin mirror concept

The optical surface is coupled to a structure of light rigid supports by a matrix of actuators, adjusted on the measurements of the wave front

Mirror deployment technologies

A 4 m Ø deployable mirror for LIDAR application has been developed on a ESA contract (ITTAO/1-4629/NL/CP Ref. 2053, Advanced Lidar Concept, ALC)

Satellite concept after deployment Diffraction limited 4 m Ø telescope ! Stowed configuration for launch Courtesy of Carlo Gavazzi Space SpA

Fig. 1. Stowed and deployed unfurlable reflector aboard a mini satellite on a small launcher

Fig. 2. LURA deployed configuration

Fig. 5. LURA -Stowed envelope

Fig. 9. Radioastron reflector by Lavochkin

Conclusions

- A mirror system is a consistent solution for EUSO
- Construction technology is already demonstrated
 - ⇒ ESA considers LATT technology as TRL 5 (ready for mission)
 - ⇒ Areal Density < 17 Kg/m² (still to be optimized)
 - Power consumption 58 mW per actuator (to be space qualified)
- The system can be scaled up, to get:
 - ⇒ higher signal ⇒ lower threshold energy
 - ⇒ higher orbit ⇒ increased observed area
- Items still to be better taken into account:
 - stray light and its influence on SNR
 - impact of the atmospheric drag
 - A higher orbit with a much larger diameter may be a better option Deployable mirrors have virtually no limit in size!

(just in costs)