Neutrinos from Extragalactic Jets under Scrutiny

Karl Mannheim ITPA, Würzburg, Germany

IceCube Collaboration 2013, Science 342, 1

```
F \sim 2 \ 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ st}^{-1}
u ~ 4\pi/c F \sim 10^{-8} \text{ eV cm}^{-3}
```


Halzen (2014)

Conjecture of 1995

KM, Astroparticle Physics 3, 295-302 (1995):

< Abstract: ... I calculate the diffuse background of high-energy neutrinos from extragalactic jets emerging from active galactic nuclei (AGN) ... Recent γ -ray observations make it very plausible that the diffuse γ -ray background ... above 100 MeV is due to radio-loud AGN. A striking similarity exists between the energy fluxes of diffuse **y-rays above 100 MeV and cosmic ray protons above the ankle.** This is an independent argument for proton acceleration in radio jets consistent with the explanation of the individual y-ray spectra by hadronically induced cascades. The corresponding prediction of a neutrino flux [model A: 10^{-8} GeV cm⁻² s⁻¹ st⁻¹ @ 100 TeV - 1 PeV] therefore rests on a firm basis. >

IceCube Collaboration 2013, Science 342, 1

E~1.0PeV

Blazars in the IceCube PeV Neutrino Fields observed by TANAMI

Krauß et al. 2014, A&A 566, L7

Blazars in the IceCube PeV Neutrino Fields

Classical double-humped blazar SEDs Blue bumps in 3 sources

Estimate Maximum Neutrino Output

- 1. Assume presence of accelerated protons (hadronic jet models)
- 2. Pion photoproduction
- 3. Estimate neutrino flux from bolometric high-energy flux

$$F_{\gamma} = 1/3 \cdot F_{\pi} + 1/4 \cdot 2/3 \cdot F_{\pi} = 1/2 \cdot F_{\pi}$$

$$F_{\nu} = 2/3 \cdot 3/4 \cdot F_{\pi} = 1/2 \cdot F_{\pi}$$

$$\overline{F_{\nu}}=F_{\gamma}$$

$E_{\rm v}$ = 0.05 $E_{\rm p,th}$ = 100 TeV - 10 PeV

FSRQ

$$N_{\nu, \text{PeV}}^{\text{max}}(2\pi) = 13 \cdot \frac{2\pi}{\Omega_{\text{HESE}-35}^{R_{50}}} \sim 336$$
$$f_{\text{emp}} = \frac{N_{\nu, \text{PeV}}^{\text{obs}}(2\pi)}{N_{\nu, \text{PeV}}^{\text{max}}(2\pi)} \sim \frac{3}{336} \sim 0.009$$

- UV-photons from accretion disk in blazars
- delta-shaped PeV spectrum
- electron neutrinos

Rescaling to observed three PeV events

$$N_{\nu,\text{PeV}}^{\text{pred}}(\Omega_{\text{HESE}-35}^{R_{50}}) = f_{\text{th}} \cdot N_{\nu,\text{PeV}}^{\max}(\Omega_{\text{HESE}-35}^{R_{50}})$$

 $f_{\rm th} = f_{\rm I} \cdot f_{\rm II} \cdot f_{\rm III}$

$$f_{\rm th} = 0.5 \cdot 0.5 \cdot 0.05 \sim 0.0125$$

Compare with theoretical scaling factor

- $f_{\rm I} \sim 0.5$ Flavor ratio for cascades folded with HESE acceptance
- $f_{\rm II} \sim 0.5$ FSRQ fraction Fermi-LAT

 $f_{III} = 0.05$ Bandwidth (2.3 spectrum, redshift, UV photon angular distribution)

Estimate Maximum Neutrino Output

Blazars in the two IceCube 1.0 PeV Neutrino Fields

The	six TANAMI blazars are capable of	Source	$F_{\gamma}(\mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1})$	event
expl	aining the observed IceCube signal	0235-618	$(1.0^{+0.5}_{-0.5}) \times 10^{-10}$	$0.19^{+0.0}_{-0.0}$
		0302-623	$(3.4^{+0.7}_{-0.7}) \times 10^{-11}$	$0.06^{+0.0}_{-0.0}$
		0308-611	$(7.5^{+2.9}_{-2.9}) \times 10^{-11}$	$0.14^{+0.0}_{-0.0}$
But:		1653-329	$(4.5^{+0.5}_{-0.5}) \times 10^{-10}$	$0.86^{+0.0}_{-0.0}$
1.	No individual source bright enough for a direct association	1714-336	$\left(2.4^{+0.5}_{-0.6} ight) imes 10^{-10}$	$0.46^{+0.0}_{-0.0}$
		1759-396	$(1.2^{+0.3}_{-0.2}) \times 10^{-10}$	$0.23^{+0.0}_{-0.0}$
	\rightarrow righest flux from 1055-529 and 1714-556	Total		1.9 ± 0
2.	Blazar y-ray luminosity function ~F-2.4			
	\Rightarrow Substantial contribution of faint remote sources			

⇒ Substantial fudge factor needed

ANTARES Results

ANTARES Collaboration and TANAMI Collaboration 2015, A&A, 576, L8

Source	$N_{ m sig}$	p	Limit	Ν	$V_{\nu,IC} =$	$1 N_{\nu,IC} = 2$	$N_{ u,IC} = 3$	$N_{\nu,IC} = 4$
	-		$10^{-8} { m GeV^{-1} \ cm^{-2} \ s^{-1}}$					
0235 - 618	0	1	1.3		-2.4	-2.1	-2.0	-1.9
0302 - 623	0	1	1.3		-2.4	-2.1	-2.0	-1.9
0308 - 611	0	1	1.3		-2.4	-2.1	-2.0	-1.9
1653 - 329	1.1	0.10	2.9		<-2.5	-2.5	-2.3	-2.2
1714 - 336	0.9	0.04	3.5		<-2.5	-2.5	-2.3	-2.2
1759 - 396	0	1	1.4		-2.4	-2.1	-2.0	-1.8

- 1653-329 and 1714-336: one event, each.
 - \Rightarrow Consistent with blazar-source hypothesis, but also with background
- Zero events for the other four blazars.

Either:

- \Rightarrow Not the sources of the PeV neutrinos, or
- \Rightarrow Neutrino spectra flatter than -2.4

Conclusions from First Two PeV Events

- Integrated flux of blazars can explain the IceCube signal
- Note: Spectrum of each source can be different from global spectrum
- Follow-up with ANTARES finds two neutrinos coincident with the two brightest candidates (still consistent with background)
- Assume an association ⇒ Rather flat neutrino spectra

Big Bird

- 2PeV event on Dec 4, 2012 (Aartsen et al. 2014)
- RA = 208.4°, Dec = -55.8° (J2000)
- Median pos. uncertainty: 15.9deg
 ⇒ 17 gamma blazars (2LAC)
- Again: integral flux sufficient to explain the signal, but this time:

Output dominated by a single source: PKS B1424-418

PKS B1424-418: Radio Outburst

- Radio core flux density increased from 1.5Jy to 6Jy in late 2012 to early 2013
- Strongest outburst ever seen by TANAMI

PKS B1424-418: Gamma Outburst

Outburst coincident with BigBird arrival time

PKS B1424-418: Outburst SED

Predicted Neutrino Output: 2.2 Events

Chance Coincidence?

Highest-energy neutrino (seen in the southern sky) Most dramatic blazar outburst of the (far) southern , sky

•

Conclusions from Third PeV Event

- Single blazar can explain an individual PeV neutrino
- Comparable blazar outbursts had substantially lowersensitivity IceCube coverage
- Conservative estimate of ~5% chance coincidence

Questions

Consistency with Glüsenkamp et al. analysis of blazar contribution to IceCube flux above 10 TeV (less than 30% to EGRB) ?

- FSRQ spectra peak between 100 TeV and 10 PeV (Γ =10)
- Unknown heavy quark contribution to pN scattering hardens atmospheric neutrino spectrum and pollutes excess flux
- Beamed jet emission only be half or less than the total energy dissipated by jets through unbeamed emission (lower power – larger number → diffuse)
- Possible Galactic Population of Pevatrons (100 TeV neutrinos)

Absence of Glashow resonance evence → steepening of spectrum ?

- Statistical limitations
- Rise towards EeV expected due to HBLs (optically thin for protons up to UHE)
- Ultimately, hit GZK neutrino flux (z-evolution, progagation)
- New physics?