Espresso Acceleration of UHECRs (and more)

Damiano Caprioli **Princeton University**

San Vito di Cadore September 2016

SNR Paradigm for Galactic Cosmic Rays

A rigiditydependent acceleration mechanism up to the knee (a few 10⁶ GV)

Astroplasmas from first principles

- Full particle in cell approach (..., Spitkovsky 2008; Amano & Hoshino 2007, 2010; Niemiec et al. 2008, 2012; Stroman et al. 2009; Riquelme & Spitkovsky 2010; Park et al. 2012; Guo et al. 2014; DC et al. 2015...) Outparticles and electromagnetic fields on a grid Move particles via Lorentz force Second Evolve fields via Maxwell equations
 - Computationally very challenging!

- A Hybrid approach: Fluid electrons Kinetic protons (Winske & Omidi; Burgess et al., Lipatov 2002; Giacalone et al. 1993,1997,2004-2013; DC & Spitkovsky 2013-2015,...)
 - massless electrons for more macroscopical time/length scales

Hybrid simulations of collisionless shocks

dHybrid code (Gargaté et al, 2007; DC & Spitkovsky 2014)

Time = $910.00 [1 / \omega_p]$

DENSITY + PARTICLES

Spectrum evolution

Acceleration efficiency: ~15% of the shock bulk energy!

DC & Spitkovsky, 2014a

 \circ Diffusive Shock Acceleration: non-thermal tail with universal spectrum f(p) \propto p⁻⁴

Particle Injection - Simulations

x-p_x Phase Space

DC, Pop & Spitkovsky, 2015

Time $t = 131.130 \omega_c^{-1}$

Encounter with the shock barrier

Low barrier (reformation)

average |e**∆Φ**|

lons advected downstream, and thermalized

To overrun the shock, ions need a minimum E_{inj}, increasing with θ (DC, Pop & Spitkovsky 15)
 Ion fate determined by barrier duty cycle (~25%) and shock inclination
 After N SDA cycles, only a fraction η~ 0.25^N has not been advected
 For θ=45°, E_{inj}~10E₀, which requires N~3 -> η~1%

High barrier (overshoot)

$|e \Delta \Phi| > m V_x^2/2$

lons reflected upstream, and energized via Shock Drift Acceleration

Minimal Model for Ion Injection

Time-varying potential barrier High state (duty cycle ~25%) Reflection + SDA Low-state (~75%) Thermalization

Spectrum à la Bell (1978)

 $f(E) \propto E^{-1-\gamma}; \quad \gamma \equiv -\frac{\ln(1-\mathcal{P})}{\ln(1+\mathcal{E})}$

P=probability of being advected 0 \circ ϵ =fractional energy gain/cycle

Hybrid Simulations: Summary

 Shock Acceleration can be efficient
 CRs amplify B via streaming instability
 DSA efficient at parallel, strong shocks (DC & Spitkovsky 2014a,b,c)
 Injection via specular reflection and shock-drift acceleration (DC et al. 2015)

 What about electrons? (Park et al. 2015)
 Toward space/astrophysical scales (Bai et al. 2015)

PART I (The one you should trust)

Acceleration of Nuclei Heavier than Hydrogen

Acceleration of Heavy Nuclei

Nuclei heavier than H must be injected more efficiently (Meyer, Drury & Ellison 1997a,b)

Studied via mu

Ef(E)

The downstream The maximum

Anomalous Abundances in CRs and SEPs

Hybrid Simulations

M=10, parallel shock, with singly-ionized nuclei (DC, Li, Spitkovsky, ~submitted)

Not Always!

M=10, oblique (ϑ =60°) shock, (DC, Li, Spitkovsky, ~subm.)

injection_AZfocus_60deg: t=240

Magnetic field z component, in blue. Ambient field strength, in red Shock estimate (red): x=939 Shock instantaneous (green): x=956 1000 1500					-
Magnetic field z component, in blue. Ambient field strength, in red Shock estimate (red): x=939 Shock instantaneous (green): x=956 1000 1500					
Magnetic field z component, in blue. Ambient field strength, in red Shock estimate (red): x=939 Shock instantaneous (green): x=956 1000 1500					
Magnetic field z component, in blue. Ambient field strength, in red Shock estimate (red): x=939 Shock instantaneous (green): x=956 1000 1500					
Magnetic field z component, in blue. Ambient field strength, in red Shock estimate (red): x=939 Shock instantaneous (green): x=956 1000 x1					
Magnetic field z component, in blue. Ambient field strength, in red Shock estimate (red): x=939 Shock instantaneous (green): x=956 1000 1500					
Shock estimate (red): x=939 Shock instantaneous (green): x=956 1000 1500	Magnetic fie	eld z component, in bl	lue. Ambient field st	rength, in red	
1000 1500	Shock estim x=939 Shock inst x=956	nate (red): tantaneous (green):			
	1000		150	0	,

Nuclei Injection

In the absence of H-driven turbulence, heavies are thermalized far downstream Searly times at parallel shocks Oblique shocks When B amplification is effective, heavies are heated up very quickly and can recross the shock because of their large gyroradii (~thermal leakage). Nuclei enhancement depends on A/Z and on the shock Mach number
 Peculiar ³He/⁴He and Fe/C enhancements in solar energetic particles
 Correlations with shock inclination (Tylka & Lee 06; Reames 12; ...) Role of suprathermal ions pre-accelerated in solar flares (e.g., Tylka+05).

Pre-existing Energetic Particles

Energetic Particle Seeds

Oblique shock with pre-existing energetic particles (DC, Zhang, Spitkovsky, in prep.)

$Log_{10}[Ef(E)](t = 15\omega_c^{-1})$

Seeds can be reaccelerated! The more energetic the better...

More on Reacceleration

Maximum injection fraction ~25% Solution Naturally comes from seeds retaining their anisotropy in the shock frame! $J_{in}+J_{ref} = J_{out}$ $J_{in}=n_{CR}v_{sh}=J_{out}$ $\Rightarrow J_{ref}=0$ In the upstream frame $J'_{ref} = J_{ref} - n_{CR}v_{sh} = - n_{CR}v_{sh}$ Current driven by reaccelerated Galactic CRs (~GeV protons from Voyager I data)

Potentially important for the PeV problem!!

PART II (The one you may trust)

Extra-galactic Cosmic Rays

Acceleration at Relativistic Shocks

Encounter with the shock: $\mathbf{p}_{i} \simeq E_{i}(\mu_{i}, \sqrt{1-\mu_{i}^{2}}, 0),$ in the *downstream* frame: $E'_{i} = \Gamma(E_{i} - \beta p_{i,x}) = \Gamma E_{i}(1 - \beta \mu_{i}),$ $p_{\mathrm{f},x}' \equiv \mu_{\mathrm{f}}' E_{\mathrm{f}}'$ $\mu_{\mathrm{f}} = \frac{\mu_{\mathrm{f}}' + \beta}{1 + \beta \mu_{\mathrm{f}}'},$ Elastic scattering (e.g., gyration): Back in the upstream:

$$E_{\rm f} = \Gamma(E_{\rm f}' + \beta p_{\rm f,x}') = \Gamma^2 E_{\rm i} (1 - \beta \mu_{\rm i}) (1 + \beta \mu_{\rm f}'),$$

\odot Following cycles: $E_f \sim 2 E_i$ CAVEAT: return not guaranteed!

First cycle: $E_f \sim \Gamma^2 E_i$

Upstream

Second Energy gain depends on µ_f-µ_i

Γ

Acceleration in Relativistic FLOWS

Requirement: interface thickness << gyroradius << typical flow size</p>

Laboratory (Downstream)

Flow (Upstream)

Most trajectories lead to a \sim Γ^2 energy gain!

Espresso Acceleration of UHECRs

SEEDS: galactic CRs with energies up to ~3Z PeV STEAM: AGN jets with Γ-factors up to 20-30

galactic-CR halo

ONE-SHOT reacceleration can produce UHECRs up to $E_{max} \sim 2\Gamma^2 3Z PeV$

 $E_{max} \sim 5Z \times 10^9 \, GeV$

UHECRs from AGN jets: constraints

Confinement (Hillas Criterion): $B_{\mu G} D_{kpc} \gtrsim \frac{4}{Z_{26}} \frac{E_{max}}{10^{20} \text{eV}}$ © Energetics: Q_{UHECR}(E≈10¹⁸eV)≈5x10⁴⁵erg/Mpc³/yr $L_{bol} \approx 10^{43} - 10^{45} \text{erg/s}; N_{AGN} \approx 10^{-4} / \text{Mpc}^{3}$ $Q_{AGN} \approx a \text{ few } 10^{46} \text{--} 10^{48} \text{ erg/Mpc}^3/\text{yr} >> Q_{UHECR}$ Efficiency depends on:
 \sim Reacceleration efficiency (ϵ >~10⁻⁴) Solution (angle of a few degrees: $\epsilon \sim 10^{-1}$ - 10^{-2}) Contributing AGNs Likely radio-loud quasars, blazars, FR-I,...

Galactic CR + UHECR spectrum

© CR spectral features Prediction of UHECR chemical composition!
 (Aloisio+13, Gaisser+13, Taylor 14,...) An additional steep/light component must fill the gal-extragal transition O Different kinds of AGNs?

DC, 2015

Pointing to Sources?

Nearby (z<0.03) known powerful blazars: Mrk 421, Mrk 501</p> Telescope Array hotspot (only at $3.4\sigma...$)

CR Summary

Origin	Source	Mechanism	E	Spectrum	Evidence
Galactic	SNRs	Diffusive Acceleration non-rel shocks	3Zx10	Universal	gamma rays e.g., Tycho
Extragal	AGNs	Espresso in rel	5Zx10	Galactic, boosted	Anisotropy? Neutrinos?
¹					

