Cosmic Ray Direct Measurements

Piergiorgio Picozza INFN and University of Rome Tor Vergata

Cosmic Ray Origin - beyond the standard models San Vito di Cadore September, 18-24, 2016

Direct detection experiments

Grigorev expt's (satellite, 1968) HEAO-3 (satellite, 1979) 'Chicago egg' (Space-lab, 1985) JACEE (>15 flights, Long Dur. Ball.) RUNJOB (>10 flights, ~Long Dur. B.) ATIC (1 Long. Dur. Ball. + Ultra LDB) CREAM (Ultra Long Duration Ballooning) Discovery of the knee in p spectrum Elemental spectra up to 0.1 TeV/nucl Elemental spectra up to 1 TeV/nucl

Elem. spectra \rightarrow 10**15 eV/nucleus

RED: balloon borne experiments *VIOLET: satellite borne experiments*

Schematic diagram of the <u>hybrid counter-multiple</u> chamber instrument used for JACEE-3. Legend: $C_0 = 1$ -acmosphere from-12 gas Chamber counter; $C_{02} = 1$ and glass Chemikev counter; PCH = proportional counter bedracope; $C_T = Tefon$ Chemikev counter; be a proportional counter bedracope; $C_T = Tefon$ Chemikev counter; be a proportional counter bedracope; $C_T = Tefon$ Chemikev counter; be a proportional counter bedracope; $C_T = Tefon$ Chemikev counter; be a proportional counter bedracope; $C_T = Tefon$ Chemikev counter; be a proportional counter bedracope; $C_T = Tefon$ Chemikev counter; be a proportional counter bedracope; $C_T = Tefon$ Chemikev counter; be a proportional counte

Fig. 1. Schematic diagram of the JACEE emulsion chambers. The JACEE-0 and JACEE-2 chambers did not have the space section.

s begun in 195 Canchatka rali mountains Sdays) 5 = 230 kg

8.9

Fig. 2. altitude profiles of four balloons, RUNJOB I, II in 1995 and RUNJOB III, IV in 1996

Fig. 1. Schematic cross-section of the CREAM payload.

Fig. 3. Energy dependence of average mass number of primary cosmic-ray particles.

In coincidence with the preparation of the SHUTTLE fleet:

The first historical measurements on galactic

Antimatter Search

Wizard Collaboration
MASS - 1,2 (89,91)
TrampSI (93)
CAPRICE (94, 97, 98)

BESS (93, 95, 97, 98, 2000)
BESS Polar I (2004)
Heat (94, 95, 2000)
IMAX (96)
AMS-01 (1998)

AMELA conceived as a CR 'Observatory'

in the limited mass volume and power imposed by satellite)

- x Optimized MDR vs GF (focus on antiparticles)
- x Quasi polar orbit +

low instrumental threshold

(both side read microstrip Si sensors)

- X Intensity and uniformity in the magnet gap (*clean pattern*) High acquisition rate (>100Hz) (*fluxes in rad belts and SAA*)
- X High granularity imaging calorimeter *(e/p, energy 'extention')* Shower tail catcher + neutron hodoscope *(e/p separation)*

Multi (≈ 0.2 ns) ToF (low E meas., isotopes)

Full coverage anticounter system (clean events)

and long duration mission (Solar min + toward Max ascent)

Down to SEP events energy

	1994	1995	1996	<u>1997</u>
ete (Massa(Ky Gap (cn×cm lunghezz (c Campo (Kg)) 150) 20×18 ×1 30 ×15) 2.5	150 16×14 35 3.5	130 16-14 45 3.5	110 16×12. 45 4
F (cm ² sr)	75	35	25	2.1
DR (%)	200	300	440	740
sta iding				
altezza di tutto PAMELA (cm)	80	100	130	115

Three Messengers, 29/08 - 3/09/2016, Listyanka (Russia)

19

Items of CR physics possible to reach with PAMELA instrument:				
<u>item</u>	<u>'flag' results</u>			
ntiparticle spectra	Positron fraction increases with			
ntinuclei	antiHe/He limit on wide E rar			
p, He, ions E spectra	p & He '2' indexes, $Ep \rightarrow 10xM$			
ght isotopes E spectra	B/C ra			
EP Energy tail study	Dec 2006 event, E tails of SE			
arth magnetosph. (rad belts, SAA)	antip trapped in S			
eliosphere	'modulation', HMF			

Summary of PAMELA results

vsics Reports 544/4 (2014), 323

Fig. 3. Antiproton spectra in a simulation expected in a 20 days flight in Antarctica with and without primary origin of PBH.

. 4. Cross sections of the BESS-Polar spectrometer. The central tracker is placed inside the solenoid coil and others are plaside the cryostat in vacuum.

BESS Spectrometer Progress

BESS improved in every 9 successful flights

Maximizing advantages in **Balloon** Experiments

BESS-Polar Program

Status of the BESS-Polar I Flight

Observation Time: 8.5 days Float Time: 8.5 days (12/13/2004-12/21/2004) Events recorded: $> 0.9 \times 10^9$ Data volume: ~ 2.1 terabytes Data recovery: completed 2004 Payload recovery: completed 2004

Status of the BESS-Polar II Flight

Observation Time: 24.5 days Float Time: 29.5 days (12/23/2007-01/21/2008) Events recorded: $> 4.7 \times 10^9$ Data volume: ~ 13.5 terabytes Data recovery: **completed** Feb 3, 2008 Payload recovery: completed Jan 16, 2010 Makoto Sasaki, Antideuteron 2014, UCLA

BESS Antiproton Measurement

BESS-Polar II Z=1 Particle Id

•MDR 240 GV, TOF 120 ps, ACC rejection 6100

•7886 Antiprotons ~10-20 times previous Solar minimum dataset

Antiproton Spectrum

- BESS-Polar II and PAMELA spectra agree in shape but differ ~14% in absolute flux
- Both agree in shape with secondary

Satellite Missions and LDF

The Alpha Magnetic Spectrometer (AMS) Experiment on the International Space Station.

May 16, 2011

S. Ting

ISS: 109 m x 80 m Life time 20 years

lessengers, 29/08 - 3/09/2016, Listyanka (Russia)

AMS-02

28

Antiproton-to-proton ratio

A Challenging Puzzle for Dark Matter Interpretation

ree Messengers, 29/08 - 3/09/2016, Listyanka (Russia)

Proton and Helium fluxes

PAMELA Science 332,69 (2011)

Proton and Helium fluxes

Proton to Helium ratio

Proton and Helium Nuclei Spectra

AMS proton flux

PAMELA vs AMS-02 proton spectrum

PAMELA vs AMS-02 helium spectrum

Boron and Carbon fluxes

PAMELA Coll., ApJ 791 (2014), 93

Hydrogen and Helium Isotopes

Pamela coll. APJ 818,1,68 (2016)

PAMELA&AMS (and Fermi) Electron (e⁻) Spectrum

Three Messengers, 29/08 - 3/09/2016, Listyanka (Russia)

Three Messengers, 29/08 - 3/09/2016, Listyanka (Russia)

Three Messengers, 29/08 - 3/09/2016, Listyanka (Russia)

Dark Matter Explanation

J. Kopp, Phys. Rev. D 88 (2013) 076013; arXiv:1304.1184 I. Cholis et al., Phys. Rev. D 80 (2009) 123518; arXiv:0811.3641v1

Pulsar Explanation

D. Hooper, P. Blasi, and P. Serpico, JCAP 0901:025,2009; arXiv:0810.1527 Contribution from diffuse mature &nearby young pulsars.

H. Yuksel et al., PRL 103 (2009) 051101; arXiv:0810.2784v2 Contributions of e⁻ & e⁺ from Geminga assuming different distance, age and energetic of the pulsar

P. Blasi & E. Amato, arXiv:1007.4745 Contribution from pulsars varying the injection index and location of the sources.

SNR Explanation

P.Blasi, PRL 103 (2009) 051104 (see also Y. Fujita et al., PRD 80 (2009) 063003, M. Ahlers et al. PRD 80 (2009) 123017) Positrons (and electrons) produced as secondaries in the sources (e.g. SNR) where CRs are accelerated.

But also other secondaries are produced: significant increase expected in the p/p and secondary nuclei ratios.

AMS p/p results

Antiproton to proton fraction

Cosmic-Ray Antiprotons and DM limits

Electron Spectrum

Cosmic rays in the heliosphere

Heliospheric conditions during PAMELA observations

Neutron Monitor counts

Data from http:// cosmicrays.oulu.fi/

Maximum Inclination of the Current Sheet (N-S Mean): 1976-2015

Computed HCS tilt angle

Data from http://wso.stanford.edu/

Solar modulation

(statistical errors only)

Solar modulation in the heliosphere

O. Adriani et al., ApJ 765 (2013), 91; M. S. Potgieter et al., Sol. Phys. (2014), 289

December 2006 Solar particle events

X3.4 solar flare,

Preliminary!

O. Adriani et al., ApJL 737 (2011), L29

Solar Physics

Solar CR propagation Solar Energetic Particle events (SEPs)

ton detection threshold

tron detection threshold

50 MeV

-Solar modulation effects
-High energy component of Solar Proton Events (from 80 Mev to 10 GeV)

-High energy component of e- and e+ in Solar Events (from 50 MeV)

- + Nuclear composition of Gradual and Impulsive Events
- + He isotopic composition

ssengers, 29/08 - 3/09/2016, Listyanka (Russia)

Terrestrial physics

Magnetosphere Radiation belts & SAA Interactions of CRs with the atmosphere

Proton spectrum in SAA, polar and equatorial regions

Primary and secondary spectra: magnetic Equator

Primary and secondary spectra: Intermediate latitudes

GAPS

GAPS

ISS-CREAM Instrument

Launch 2017

CALET

CALorimetric **E**lectron **T**elescope

Main Telescope: CAL (Calorimeter)

W converter + thick calorimeter (total 33 X_0) + precise tracking + charge measurement high energy γ -ray, electron and CR telescope

GAMMA-400

- AC anticoincidence detectors
- C Conveter-Tracker
- S1, S2 ToF detectors
- S3, S4 calorimeter scintillator detectors
- CC1 imaging calorimeter (2 X₀) 2 layers: CsI(Ti) 1 X₀ + Si(x,y) (pitch 0.1 mm)
- CC2 electromagnetic calorimeter CsI(TI) 20 X_0 3.6x3.6x3.6 cm³ 22x22x10 = 4840

HERD Design: 3D Calo & 5-Side Sensitive

About a factor 10 increase in statistics respect to existing experiments with a weight $2.3 \text{ T} \sim 1/3 \text{ AMS}$

STK(W+SSD) Charge gamma-ray direction CR back scatter

Shuang-Nan Zhang, 3rd HERD Workshop, XiAn, Jan 2016

Dependence of Elementary Particles from Energy

Unexpected Result Flux Ratio of Elementary Particles \overline{p}/p is energy independent above 60 GeV

Flux Ratios p/e⁻ and p/e⁻ are not energy independent in the interval 60-450 GV

