#### Acceleration (theory):



 $\rightarrow$  L<sub>B</sub>  $\gtrsim 10^{45}$  Z<sup>-2</sup>  $A^2$  ... erg/s to accelerate up to  $10^{20}$ eV ( $A = t_{acc}/t_L$ )  $\rightarrow$  p shock acceleration: either mildly relativistic shocks (GRB internal shocks, blazar internal shocks, trans-relativistic supernovae) or magnetized relativistic shocks with dissipation (in young msec pulsars)

#### Phenomenology depends on the composition... a crucial issue to be solved.

→ if anisotropies exist at GZK energies but not at GZK/Z energies: ⇒ strongly suggests that anisotropies are produced by protons

#### $\implies$ Search for the origin of ultra-high rigidity cosmic rays...

# **Particle acceleration to extreme rigidities**

Martin Lemoine

Institut d'Astrophysique de Paris

CNRS, Université Pierre & Marie Curie





→ chemical composition, or rigidity E/(eZ) at a given energy, controls the phenomenology at ultra-high energies:

(1) sources of 10<sup>20</sup>V are much more extreme than sources of 10<sup>18</sup>V particles:

... e.g., a few candidate sources for 10<sup>20</sup>eV protons vs *dozens* of candidate sources of 10<sup>20</sup>eV iron...

(2) light particles leave stronger signatures of their sources:

... e.g., anisotropies at ultra-high energies with deflections of a few deg, vs large deflections for iron-like primaries

... e.g., secondary photons and neutrino signals

#### GeV photon halo from a UHECR source



→ a possible signature of UHECR acceleration: a gamma-ray halo / secondary flux from a powerful source, from synchrotron radiation of secondary electrons (Aharonian 02, Gabici & Aharonian 05, Kotera+ 11):

→ detection with CTA requires a large CR luminosity of protons above  $10^{19}$ eV:  $L_{cr} \sim 10^{46}$  erg/s for a distance 1Gpc...





see also Essey+ 10,11, Murase+ 12

## **Motivations**



 $\rightarrow$  chemical composition, or rigidity E/(eZ) at a given energy, controls the phenomenology at ultra-high energies:

(1) sources of  $10^{20}$ V are much more extreme than sources of  $10^{18}$ V particles:

... e.g., a few candidate sources for 10<sup>20</sup>eV protons vs *dozens* of candidate sources of 10<sup>20</sup>eV iron...

(2) light particles leave stronger signatures of their sources:

... e.g., anisotropies at ultra-high energies with deflections of a few deg, vs large deflections for iron-like primaries

... e.g., secondary photons and neutrino signals

→ <u>Outline</u>:

- 1. Phenomenology: anisotropies vs chemical composition at UHE
- 2. Theory: (relativistic shock) acceleration to ultra-high rigidities





Pierre Auger Observatory 2015 anisotropy map – Li-Ma excess significance:

... no significant departure from anisotropy below 1% chance probability





Telescope Array 2014 anisotropy map – Li-Ma excess significance:

... a hot-spot seen with a (post-trial) significance of 3.4 sigma...

## Anisotropies vs heavy composition at UHE



 $\rightarrow$  if anisotropic signal >E is due to heavy nuclei, then one should detect a stronger anisotropy signal associated with protons of same magnetic rigidity at >E/Z eV... **argument independent of intervening magnetic fields...** (M.L. & Waxman 09)

> $10^{25}$ PAOICRC-07 all-sky average flux E<sup>3</sup> j(E) [eV<sup>2</sup> m<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>] 1024 proton anisotropic 1023 component iron anisotropic •injection shaped by rigidity, s=2: 1022 q<sub>p</sub>/q component  $E_{max} \propto Z$ •composition:  $q_p/q_{Fe} = 1/0.06$  as in sources of GCR 1021 10 100 1 Energy [EeV]

 $\rightarrow$  signal-to-noise at low energy vs that at high energy:

$$S/N|_{p} (>E/Z) \simeq \alpha_{loss,Z} Z^{-0.85} \frac{N_{p}}{N_{Z}} S/N|_{Z} (>E)$$

$$\sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=$$

## Anisotropies vs heavy composition at UHE



 $\rightarrow$  if anisotropic signal >E is due to heavy nuclei, then one should detect a stronger anisotropy signal associated with protons of same magnetic rigidity at >E/Z eV... **argument independent of intervening magnetic fields...** (M.L. & Waxman 09)

$$S/N|_{p} (>E/Z) \simeq \alpha_{loss,Z} Z^{-0.85} \underbrace{\frac{N_{p}}{N_{Z}}}_{>1} S/N|_{Z} (>E)$$

 $\rightarrow$  if anisotropies are seen at >E, say >50 EeV, but not at any E/Z, with Z  $\sim$  6-26, then the following assertions cannot hold simultaneously:

(1) the anisotropy signal at >E is real (=not a statistical accident)

(2) the composition at energies >E is heavy: O, Si, Fe...

(3) the sources have a "reasonable" metallicity  $N(Z>6)/N(Z=1) \ll 1$ 

 $\Rightarrow$  if anisotropies are not statistical accidents, there exist GZK protons, or the source metallicity is extraordinarily large...

# Anisotropies vs heavy composition at UHE

 $\rightarrow$  taking into account photodisintegration, nuclei with energy >2E produce protons with energy >E/Z, which add up to the anisotropy signal... Liu+ 13



 $\rightarrow$  to assume that the anisotropies are produced by heavy nuclei thus requires a source metallicity:

if Fe at UHE: Z  $\gtrsim$  1000 Z\_{\odot}; if Si at UHE: Z  $\gtrsim$  1600 Z\_{\odot}; if O at UHE: Z  $\gtrsim$  100 Z\_{\odot} ... sources with such high metallicities?

## Acceleration to UHE in low luminosity GRBs

 $\rightarrow$  low luminosity GRBs, also associated to X-ray flashes, are interpreted as trans-relativistic supernovae with ejecta velocity  $\gamma\beta \sim 1...$  the missing link to standard supernovae? possible sources of UHE nuclei (Wang et al. 08,Chakaborty et al. 11, Liu & Wang 12, Budnik et al. 08)

energy budget OK:  $\dot{n}_{\text{LLGRB}} \sim 10^{-7} - 10^{-6} \,\text{Mpc}^{-3} \,\text{yr}^{-1}$ ,  $E \sim 10^{50} \,\text{erg}$ maximal energy:  $E_{\text{max}} \sim Z \times 10^{18} - 10^{19} \,\text{eV} \implies$  heavy nuclei at UHE

Note:

Hillas bound assumes scatering in a Bohm regime!





#### Acceleration – a luminosity bound

(e.g. Lovelace 76, Norman+ 95, Blandford 00 A generic case: acceleration in an outflow Waxman 05, Aharonian+ 02, Lyutikov & Ouyed 05, Farrar & Gruzinov 09, M.L. & Waxman 09)  $\rightarrow$  acceleration timescale (comoving frame):  $t_{\rm acc} = \mathcal{A} t_{\rm g}$  $\rightarrow$  A >> 1 in most acceleration scenarios: wind e.g. in Fermi-type,  $\mathbf{A} \sim$  interaction time / energy gain sub-relativistic Fermi I:  $\mathcal{A} \sim (t_{\rm scatt}/t_{\rm g})/\beta_{\rm sh}^2$ and t<sub>scatt</sub> > t<sub>g</sub> (saturation: Bohm regime!) sub-relativistic stochastic:  $\mathcal{A} \sim (t_{
m scatt}/t_{
m g})/eta_{
m A}^2$ sub-relativistic reconnection flow:  ${\cal A} \sim 10/eta_{
m A}$  (on reconnection scales)

relativistic Fermi I:  ${\cal A} \sim t_{
m scatt}/t_{
m g}$  in shock frame, much more promising?

relativistic reconnection:  $\mathcal{A} \sim 10$  (on reconnection scales)

## Acceleration – a luminosity bound



gamma-ray bursts:  $L_{bol} \sim 10^{52}$  ergs/s

... many (many) others for heavy nuclei?



## Centaurus - a close FR I radio-galaxy





jet kinetic luminosity:  $L_{\rm jet} \simeq 2 \times 10^{43} \, {\rm erg/s}$ 

 $\Rightarrow$  too small to account for 10<sup>20</sup> eV protons ...  $E_{\rm max} \sim Z \times 10^{18} \, {\rm eV}$ 

in jet/lobe

## Acceleration – a luminosity bound



Körding+07: energy input of radio-galaxies



(a): energy input of 10<sup>45</sup> erg/Mpc<sup>3</sup>/yr... density 0.5 10<sup>-7</sup> Mpc<sup>-3</sup>

(b): energy input of 3 10<sup>43</sup> erg/Mpc<sup>3</sup>/yr... density 10<sup>-11</sup> Mpc<sup>-3</sup>

... to match the flux above 10<sup>19</sup> eV: input rate needed 10<sup>44</sup> erg/Mpc<sup>3</sup>/yr (Katz+ 09)

#### Energy output of a source:

ightarrow to match the flux above 10<sup>19</sup> eV,  $\dot{u}_{
m UHECR}\,\sim\,10^{44}\,{
m erg/Mpc^3/yr}$  (Katz+ 10)

 $\rightarrow$  per source, assuming it is steady:  $L_{\text{UHECR}} \sim 10^{43} n_{-7}^{-1} \, \text{erg/s} \quad (n \, \text{in Mpc}^{-3})$ 

 $\rightarrow$  per transient source:  $E_{\text{UHECR}} \approx 10^{50} \,\text{erg} \,\dot{n}_{-6}$   $(\dot{n} \,\text{in Mpc}^{-3} \text{yr}^{-1})$ 

<u>note:</u> if one wants nuclei at >E to circumvent luminosity bound, accounting for the protons accelerated to >E/Z requires an energy input higher by M<sub>p</sub>/M<sub>Z</sub> ... for reference, solar composition means:

$$\frac{M_{\rm H}}{M_{\rm CNO}}\Big|_{\odot} \sim 70, \quad \frac{M_{\rm H}}{M_{\rm Si-group}}\Big|_{\odot} \sim 1000, \quad \frac{M_{\rm H}}{M_{\rm Fe-group}}\Big|_{\odot} \sim 500$$

e.g., for the whole population,  $nL \sim 3 \ 10^{47} \ erg/Mpc^3/yr$ , from sources with  $L \sim 10^{43} \ erg/s$ ; if injecting CNO to match flux at  $10^{19}$ eV and if metallicity is ~solar, requires an overall efficiency in high energy CR of a few percent!

 $\Rightarrow$  shock dissipation as an ideal mechanism to channel a sizable fraction of the source luminosity at UHE...







 $\rightarrow$  if scattering is effective, very fast acceleration with  $t_{acc} \sim t_{scatt}$  in shock rest frame, spectral index ~2.2

→ however, background magnetization hamper acceleration, and self-generated turbulence built on very short spatial scales leads to slow scattering:

... at  $\gamma_{sh} \gg$  1, the shock becomes perpendicular (superluminal), and particles are advected away with the background magnetic field (Begelman + Kirk 90, ML+06)

... at  $\gamma_{sh} \gg 1$ , the precursor length scale is short, of order  $r_g / \gamma_{sh}^3$ , hence no gyro-resonance, no Bohm... scattering timescale  $\propto E^2$ ... (Achterberg+01, Pelletier+09)

Gamma-ray burst afterglows

100

Pulsar Wind Nebulae













