

Fermi-LAT highlights on Supernova Remnants

<u>Leonardo Di Venere</u> Francesco de Palma

for the Fermi-LAT collaboration

University and INFN of Bari

Cosmic Ray Origin beyond the standard models San Vito di Cadore 20th September 2016

- Cosmic Rays and Supernova remnants
- Fermi-LAT detection of SNRs
 - Young SNRs
 - 'Pion bump' observation
 - Morphology studies
- The first Fermi-LAT SNR Catalog
 - Analysis method and results
 - Multi-wavelength correlation (radio, TeV)
 - Constraining CR acceleration

Supernova Remnants

Kepler SNR

Energetics of SNRs

- SN explosion energy E_{SN}~10⁵¹ erg
- Rate of explosion in the Galaxy R_{SN}~3 SN/century
- Confinement time of cosmic rays $T_e \sim 10$ Myr
- Cosmic-ray energy density ρ_{CR} ~1 eV cm⁻³

 $\rho_{CR} = R_{SN} E_{SN} \tau_e \epsilon$

Acceleration efficiency required $\varepsilon \le 10\%$

Spectral energy distribution (SED) of SNRs

• Pion decay

Gamma-ray Space Telescope Spectral energy distribution (SED) of SNRs

 γ -ray flux originates from the interaction of <u>accelerated particles</u> with the SNR environment: **SNR paradigm for Cosmic Rays**

Radio to X-ray range

Synchrotron peak

Three competitor processes for GeV-TeV energy range

- Inverse Compton
- Bremsstrahlung

Pion decay

Gamma-ray Space Telescope

20th September 2016

The Fermi-LAT experiment

20th September 2016

Space Telescope

Gamma-ray sky obtained with 5 years of *Fermi*-LAT data with E>1GeV

20th September 2016

Gamma-ray Space Telescope

Supernova Remnants

20th September 2016

Young SNRs

- Approx. few thousands years old
- Simple environments
- Small energy losses

Ideal targets to test the acceleration theory and look for 'Pevatrons'

Leptonic scenario

RX J1713.7-3946

RCW 86

M. Ajello et al., ApJ 819 (2016) 98

γ-ray emission dominated by Inverse Compton

20th September 2016

Hadronic scenario

γ-ray emission dominated by pion decay

Presence of accelerated protons

Morphology studies with Pass 8

RCW 86

Detected as extended with Pass8: radius ~ 0.37° ±0.02.

Best morphological photon distribution: **H.E.S.S. template** (A. Abramowski et al., arXiv:1601.04461 (2016))

Multi-zone analysis ongoing RX J1713.7-3946 Preliminary results in Condon et al @ Gamma 2016

IC 443

Preliminary results in Hewitt @ Fermi Symposium 2015

M. Ajello et al., ApJ 819 (2016) 98

20th September 2016

Gamma-ray Space Telescope F. Acero et al., Astroph. Journ. Suppl. Series , 224 (2016), 8

- 36 SNR candidates with spatial association with radio counterparts
 - 17 extended sources: 4 new
 - 13 point-like sources: 10 new
 - 2 are flagged for IEMs systematics
 - 4 identified as other sources (Crab, binary, and PWN/PSR)
 - 14 marginally classified

- Interacting SNRs (density $\geq 100 \ cm^{-3}$)
- Young SNRs (non-thermal X-ray emission)
- Classified candidates
 Marginal candidates
- Point-like sourcesExtended sources

Radio-GeV Diameter

- Interacting SNRs
- Young SNRs
- Classified candidates
- Marginal candidates
- X Min and max extension of the source needed to remain in the same class.

Space Telescope

Radio-GeV Index

• Caveat: TeV sources are not uniformly surveyed.

1 TeV

1 GeV

Ε

Gamma-ray Space Telescope

Environment?

No clear trend though both axes are proportional to distance². Some separation between classes, diminishing as we find more, fainter candidates.

Young SNRs:

• Low $L_{\gamma} \rightarrow$ evolving into low density medium?

Interacting SNRs:

• Higher $L_{\gamma} \rightarrow$ encountering higher densities?

20th September 2016

San Vito di Cadore

Or Evolution?

Young SNRs tend to be harder than older, interacting SNRs.

GeV index evolves with time: apparent increase for older remnants

May be due to a combination of:

- decreasing shock speed allowing greater particle escape?
- decreasing maximum acceleration energy with SNR age?

Constraining CR emission

Assume that the whole gamma ray emission arises from the interaction of CR with the ISM.

 $F(1 - 100 \,\text{GeV}) \approx f(\Gamma_{\text{CR}}) \times \frac{\epsilon_{\text{CR}}}{0.01} \times \frac{E_{\text{SN}}}{10^{51} \,\text{erg}} \times \frac{n}{1 \,\text{cm}^{-3}} \times \left(\frac{d}{1 \,\text{kpc}}\right)^{-2} \times 10^{-9} \,\text{cm}^{-2} \,\text{s}^{-1}$

20th September 2016

Gamma-ray Space Telescope

The estimates and upper limits on the CR energy content span more than three orders of magnitude, from a few $10^{49} erg$ to several $10^{52} erg$.

- SNRs above the $\epsilon_{CR} = 1$ ($E_{CR} = E_{SN} = 10^{51} erg$) \rightarrow higher density than derived from X-ray or assumed \rightarrow interacting SNRs are in dense environment.
- Young SNRs $\epsilon_{CR} \sim 0.1 \rightarrow$ IC processes may contribute to their measured luminosity.

20th September 2016

Gamma-ray Space Telescope

- SNRs are the best candidates to be CR acceleration sites
- NLDSA predictions are compatible with CR observations
- Fermi-LAT is providing key information to find evidence of accelerated CRs in SNRs
- Young SNRs are very interesting targets to test the acceleration theory
- Pass 8 improvements are allowing spatial extension studies, to compare γ-ray emissions with other wavelengths
- The first SNR catalog suggested possible correlations from MW observations:
 - changes in spectral slope at or near TeV energies (sample limited)
 - a softening and brightening in the GeV range with age
 - simple model assumptions are no longer sufficient

Stay tuned!

Comparing Gamma-Ray SNRs

- <u>Young SNRs</u> have hard spectra, extend to ~ 10^{13-15} eV
- <u>Older SNRs</u> are brighter (due to high density target) but show a clear break in their spectrum at ~ few GeV

ermi

Gamma-ray Space Telescope

Middle age SNRs

IC 433

- Middle age (3000-30000 yr), Mixed morphology SNR, Distance 1.5 Kpc
- Interactions with Molecular Cloud

W 44

- Middle age (~20000 yr), Mixed morphology SNR, Distance 3 Kpc
- Interactions with Molecular Cloud

W 51C

- Middle age (~30000 yr), Distance 5.5 Kpc
- Interactions with Molecular Cloud

In this kind of SNRs the **acceleration process** is **not very efficient** anymore, as suggested by the steep spectrum at high energies.

SNRs interacting with MCs are useful to investigate **CR propagation around sources and escape** from them.

They are at the **initial stage of their evolution**, they are evolving in much simpler (and in most cases **low density**) **environments**.

A multi-wavelength observation might give very detailed **information about the shock** generated by the SN explosion and **CRs acceleration** in SNRs.

RX J1713.7-3946

- Young Age (2000 yr), Distance 1 Kpc
- SN Type II/Ib explosion

RCW 86

- Young Age (1800 yr), Distance 2.5 Kpc
- SN Type la explosion

Tycho

- Young Age (440 yr), Distance 3.5 Kpc
- SN Type Ia explosion

Cas A

- Young Age (340 yr), Distance 3.4 Kpc
- SN Type IIb explosion

Radio-GeV Flux

Spatial coincidence

20th September 2016

Mock catalog: Chance Coincidence Study

Use measure of chance coincidence in mock catalog to estimate false alarm rate and error. Set thresholds to 0.4: < 22% false-positive rate.

Systematic Error Study

To evaluate the systematic uncertainties related to the choice of the Interstellar Emission Model (IEM), we used 8 alternative IEM and for each of them and each candidate we perform an independent fit and localization.

We developed this method using 8 representative candidate SNRs. They are **hard**, **soft**, pointlike (**x**) and extended (**o**) sources and they are located in regions with different intensities of the IEM.

For the description of the models see: Ackermann et al., 2012, Apj, 750, 3

Gamma-ray Space Telescope

They are built using GALPROP with input parameters set as:

- CR source distribution =[SNR and Lorimer],
- Halo height = [4 kpc and 10 kpc],
- HI spin temperature =[150K and optically thin]

and then fit to the data.

The HI and CO emission split into 4 Galactocentric rings and the inverse Compton emission are fit simultaneously with the source of interest.

Warning:

- these 8 models do not span the complete uncertainty of the systematics.
- the method for creating this model differs from that used to create the official Fermi-LAT interstellar emission model, so these <u>8 models do not bracket the official model</u>.

F. de Palma et al., *Fermi* Symposium 2012 proceedings arXiv:1304.1395

For each parameter (e.g. Flux, Index,..) obtained with the STD IEM P_{STD} we evaluate using the parameter P_i obtained with the alternative IEM the weighted systematic error:

Source distribution Halo height

Spin temperature

0.0

0.0 Source distribution Halo height Spin temperature

Systematic Errors

ermi

Gamma-ray Space Telescope Forth

We estimate the systematic errors using the alternative IEMs and the effective area bracketing IRFs, summing the independent errors in quadrature.

Added background sources compared to the number of 2FGL sources in 3°.

Gamma-ray Space Telescope