CRBTSM 2016 San Vito di Cadrore, 19th-24th Sept. 2016

GAMMA RAYS FROM SUPERNOVA REMNANTS

Yasunobu Uchiyama (Rikkyo University, JAPAN)

SNR ORIGIN OF GALACTIC COSMIC RAYS

Yasunobu Uchiyama (Rikkyo)

Composition: mostly protons

- Recent detection of π -decay gamma-rays with AGILE/Fermi

- > 100 TeV sources (beyond KN) are of hadronic origin

- **C** Energy Spectrum: E^{-2.7}
 - Acceleration spectrum (DSA: Diffusive Shock Acceleration)
 - Propagation in the Galaxy
 - Escape from accelerators

Energy Budget: I eV/cm³

- Acceleration efficiency
 - 10% of SN explosion kinetic energy
- Non-linear effects?
- Aximum Energy: PeV (10¹⁵ eV)
 - DSA with B-field amplification
 - Escape from accelerators

ACCELERATION EFFICIENCY

Diffusive Shock Acceleration

Yasunobu Uchiyama (Rikkyo)

Acceleration Efficiency (1): "Energy Content"

 How thermal (Maxwellian) particles can be injected into Fermi acceleration?
 Depends on B-field orientation?
 Energy content of protons?

Acceleration Efficiency (2): "Maximum Energy"

B-field amplification?
 Depends on B-field orientation?
 Escaping CRs? (important for protons)

GAMMA-RAY OBSERVATORIES

H.E.S.S. GALACTIC PLANE SURVEY

Figure 3. Same as in Figs 1 and 2 but now two zones are considered: the acceleration zone around the shock, where the magnetic field is amplified and given by equation (11), and an inner region with a weaker magnetic field equal to 30 μ G. The spectrum of particles accelerated at the shock is a power law in momentum with slope 4.4 and 4.1 for the black and red curve, respectively (models M5 and M6 in Table 2).

Yr.

H.E.S.S. Phase-II has started in 2013 Japanese group (Rikkyo U./JAXA) has joined in 2016 (Lead: Y. Uchiyama)

CLASSIFICATION

CASSIOPEIA A

Yasunobu Uchiyama (Rikkyo)

* Hadronic origin is preferred
* Gamma-ray production site(s) are uncertain: forward/reverse shocks?
* W_p = 4×10⁴⁹ erg (w/ evolution model) (2% of explosion kin energy: 2×10⁵¹ erg)
* E_{p,max} = 10 TeV "PeV Crisis?"
* B > 0.1 mG (consistent with X-ray)

NuSTAR: Ti (68-78 keV) Cas A

NuSTAR (2012~ Hard X-ray imager

Chandra: Fe

Cas A

Radioactive Titanium

CAS A: DISCOVERY OF TI-K

Ikeda & Uchiyama, in prep.

PUPPIS A

Suzaku X-ray Observations (Takahashi+2008; Tanaka+2008; Sano+2012)

- Suzaku XIS+HXD spectra revealed a spectral cutoff, as expected from DSA theory
- Absence of X-ray line emission from shock-heated plasma
 - Strong constraint on the origin of GeV-TeV emission

OUR RECENT X-RAY STUDY

Yasunobu Uchiyama, Naomi Tsuji (Rikkyo U), Satoru Katsuda (ISAS), Felix Aharonian (MPI-K/DIAS), David Berge (Amsterdam)

New H.E.S.S. image of RXJ1713.7-3946

Yasunobu Uchiyama (Rikkyo)

(1) H.E.S.S. - Fermi - Suzaku Ongoing

(2) Chandra Tsuji and Uchiyama, submitted

(3) XMM Discovery of thermal X-rays (S. Katsuda et al. 2015)

(4) NuSTAR We have an AO1 program (NW rim).

DISCOVERY OF THERMAL X-RAY EMISSION Katsuda+ 2015

Energy (keV)

SHOCK SPEED MEASUREMENT WITH CHANDRA Tsuji & Uchiyama submitted

EVOLUTION MODEL

Tsuji & Uchiyama submitted

Model parameters: s = 2 (stellar wind) n = 7 $T_{age} = 1618 \text{ yr} \leftarrow SN393$

 $R_b = 8.68 \text{ pc} \leftarrow \text{radius at box (a)}$

age

[yr]

1618

1618

1618

1618

1618

1618

1618

Model

1

2

7

8

8

2

2

2

2

2

2

2

n

7

7

7

7

7

7

7

 $V_b = 3900 \text{ km/s} \leftarrow \text{velocity: box (a)}$

 R_b

[pc]

8.67

8.75

8.67

8.65

8.67

8.57

8.67

3364

31290

19030

437

4073

2477

1. Ambient density ~ 0.01–0.02 cm⁻³, $M_{ej} \sim 1-3 M_{Sol}$, $E_{ej} \sim 1 \times 10^{51} \text{ erg}$

1806

2968

2863

 R_r

5.13

6.27

6.25

 v_b

[km/s]

4193

3947

4193

4182

4193

4142

4193

- 2. Likely consistent with SN393
- 3. Not yet in full ST stage \rightarrow Energy of CRs may not have reached its maximum

0.02

0.017

0.02

2.0

10.0

8.0

1.0

2.0

2.0

Yasunobu Uchiyama (Rikkyo)

1.87

5.48

5.43

5.7

4.84

5.7

SECONDARY SHOCKS?

box ID	Velocity [km/s]
box (a)	3900 ± 300
box (b)	1200 ± 300
box (c)	1400 ± 200
box (d)	2900 ± 200
box (e)	800 ± 300

Shock interaction with cloud clumps

—-> many secondary shock waves are formed in SNR shell, due to the turbulent flow ($\langle \delta v \rangle = 0.8 C_s$ in SNR shell ~ v_{shock}).

Secondary shocks formed in the shell may

Inoue+2012

enhance particle acceleration.

NUSTAR

TEV EMISSION BEYOND X-RAY SHELL

X-ray vs TeV radial profiles

H.E.S.S. Collaboration (2015, in prep.)

Radius (deg)

GAMMA-RAY ORIGIN?

Gabici & Aharonian 2014

π-decay

gammá-rays

MIDDI E-VUEU CND MITH WU

AGILE & Fermi: W49B : H.E.S.S. and Fermi-LAT Analysis Results

Preliminary

10⁻¹⁰

10-1

10⁻¹³

10-14

 10^{-1}

[erg cm² s.]

ш

F. Brun W49B,

- Model Analysis using Standard cuts ($E_{th} \sim 290 \text{ GeV}$)
- W49B detected at 12.9σ
- Morphology : point-like source
 - PSF ~ shell size \rightarrow emission from the center or from the shell itself

H.E.S

- b

- Ferm

W49B

10³

10²

Energy (GeV)

Fermi Coll. & H.E.S.S. Coll (submitted)

10⁴

Ν

Yasunobu Uchiyama (Rikkyo)

VERI

MAGI AGILE

.....

10.10

10

10'12

E² dN/dE (erg cm⁻² s⁻¹)

CRUSHED CLOUD MODEL Uchiyama+ 2010, based on Blandford & Cowie (1982)

 $\pi^0\text{-}decay$ $\gamma\text{-}rays$ come from shocked molecular clouds

- ★ Radiative shock → high compression → high CR & gas density
- Shock: slow (~100 km/s), partially ionized -> Maximum energy < TeV</p>

* Reacceleration of pre-existing CRs

- Historical SNRs Cas A & Tycho
 - Hadronic origin, Magnetic field amplification, CR energy content
- Young TeV-bright SNRs RX J1713.7-3946 & Vela Jr.
 - Leptonic origin?
 - Hadronic origin? (E-dependent penetration into clumps)
- SNRs interacting with molecular clouds
 - W51C, W44, IC443, W28, W49B, ...
 - Direct evidence for hadronic origin (IC443, W44)
 - Evidence for Runaway CRs
- Evolved SNRs without molecular cloud interactions
 - Pup A, Cygnus Loop, S147
 - Hadronic origin