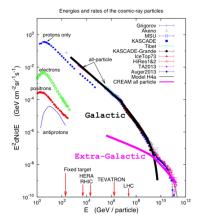
# Positron Anomaly in Galactic Cosmic Rays: Constraining Dark Matter Contribution

Mikhail Malkov

University of California, San Diego


Ackn: Pat Diamond and Roald Sagdeev (UMD) Supported by NASA and US DoE (PRD 94, 063006, 2016)



CRBSM 2016, San Vito di Codore

・ロト ・四ト ・ヨト ・ヨト

## More than 100 years of cosmic ray research...

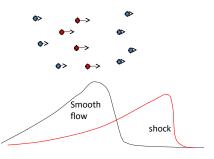


IceCube compilation of CR spectrum

- CR energy spectrum was long thought to be a featureless power law:
  - a hallmark of the underlying acceleration mechanism:
  - diffusive shock acceleration, DSA
- DSA rigidity spectra should be the same for all CR species
- Any change in power-law index interpreted as change of acceleration regime, source (galactic-extragalactic, etc.)

## An incredibly exciting time for this field...



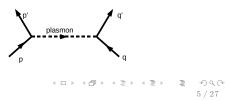

Alpha Magnetic Spectrometer (AMS-02): Particle detector operating on the International Space Station

- Both energy (rigidity) spectrum and composition aspects of DSA scrutinized using modern instruments and proved not true in some instances
- Either we do not understand how DSA works and/or there are additional, probably exotic CR sources, such as dark matter decay or annihilation

## Outline

- 1 Exciting time for the field, difficult times for DSA
  - DSA: too big to fail?
  - SNRs as main source of galactic CRs ("Standard Model")
- 2 Disagreements: anything wrong with DSA?
  - Anomalies in positron spectrum
  - Possible explanations and their weaknesses
- (3) A new look at positron anomaly
  - Charge-sign dependent CR acceleration: molecular gas ahead of the SNR shock
  - Physics of rising and falling branches of positron fraction: NL DSA
  - Physics of the spectral minimum
- 4 Conclusions: Room for DM/Pulsars contribution

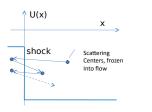
# CR production mechanism: Diffusive Shock Acceleration (DSA)




#### flow velocity

- -Most shocks of interest are collisionless
- -Big old field in plasma physics

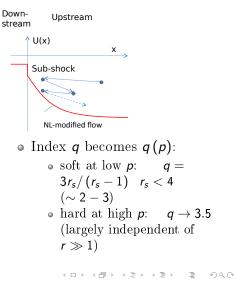
#### Problems:


- How to transfer momentum and energy from fast to slow gas envelopes if there are no binary collisions?
- waves...
- driven by particles whose distribution is almost certainly unstable...



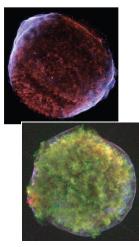
# Essential DSA (aka Fermi-I process, E. Fermi, ~1950s)

#### Linear (TP) phase of acceleration


Downstream



- Particles are trapped between converging mirrors:
   pΔx ≈ const
- CR spectrum: determined by shock compression, *r*:


 $f \sim p^{-q}, \quad q = 3r/(r-1),$ r = q = 4 for strong shocks  $M \rightarrow \infty$ 

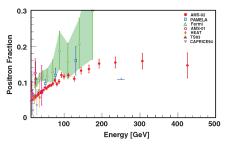
#### NL, with CR back-reaction



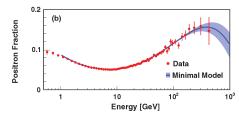
6/27

# CR acceleration in SNRs




SN 1006 and SN 1572 (Tycho), Reynolds 2008 and Warren et al 2005

- At least some of the galactic SNR are expected to produce CR up to  $10^{15} eV$  (knee energy)
- "Direct" detection is possible only as secondary emission
  - observed from radio to gamma
  - electron acceleration up to  $\sim 10^{14} eV$  is considered well established, synchrotron emission in x-ray band (Koyama et al 1995, Bamba et al 2003)
  - tentative evidence of proton acceleration from nearby molecular clouds:


$$\textit{pp} \rightarrow \gamma$$

Fermi-LAT, HESS, Agile, ...

## Positron Anomaly (excess)



- Positron excess (Accardo et al 2014)
- Observed by different instruments for several years
- Dramatically improved statistics by AMS-02 (published in 2014)



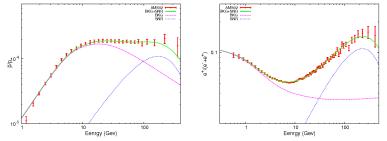
Things to note:

- Remarkable min at  $\approx 8~{\rm GeV}$
- Unprecedented accuracy in the range 1-100 GeV
- Saturation (slight decline?) trend beyond 200 GeV
- Eagerly awaiting next data release!

## Suggested explanations of positron excess

- Early explanations focused on the rising branch of positron anomaly
- Most of the SNR related suggestions invoke secondary  $e^+$  produced by galactic CR protons colliding with:
  - $\circ\,$  ambient dense gas in surroundings of SNR accelerator (Fujita+ 2009)
  - $\circ\,$  elsewhere in the Galaxy (Blum+2013, Cowsik+ 2014)
  - $\circ\,$ immediately at shock front (Blasi 2009, Mertsch 2014, Cholis<br/>+2014)
- $\bullet\,$  Tensions with  $\bar{\rho}$  observations (should show similar trends, as both are secondaries)
- Poor fits to high-precision AMS-02 data or too many *ad hoc* assumptions (e.g. multiple sources with, often, arbitrary power-law indices)

- Pulsars (e.g. Profumo 2012, big review). Possible, but have disadvantage of lacking accurate acceleration models
- Dark matter contribution ??
- Positrons injected into DSA by radioactive elements of SN ejecta

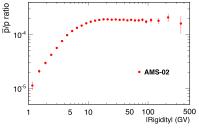

### Obvious remarks

- As Pulsars and particularly DM have much weaker predictive capabilities than the DSA-SNR- based models, they should be considered seriously only if (or where) the SNR contribution falls short to account for the positron excess
- SNR contribution to the phenomenon thus constrains possible DM/pulsar contributions

## Weaknesses of explanations – Motivation

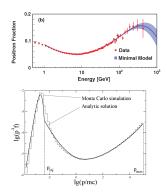
## Bottom line:

 $e^+/e^-$  explained only by adjusting independent sources BO-QIANG LU and HONG-SHI ZONG PHYSICAL REVIEW D 93, 103517 (201




## Weaknesses:

- $\,\circ\,$  Flatness of  $\bar{\rho}/\rho$  and position of minimum in  $e^+/e^-$  are coincidental
- B/C,  $\bar{\rho}/\rho$  secondary constraints put a 25% upper bound on SNR contribution to the positron rise (Cholis&Hooper, 2014)

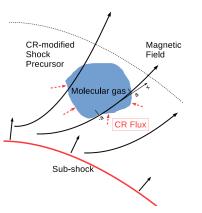

- $\circ\,$  account for  $e^+$  fraction by a single-source, a nearby SNR
- explain physics of decreasing and increasing branches
- $\bullet\,$  identify physics of the minimum at  $8\,\,{\rm GeV}$
- understand  $\bar{\rho}$  flat spectrum as intrinsic, not coincidental: most likely, accelerated just like protons, whenever injected BUT:  $\bar{\rho}/\rho \neq e^+/e^-$
- $\implies$  acceleration mechanism ought to be *charge-sign dependent*
- physics of charge-sign selectivity

## The Hints



(AMS Days at CERN, Kounine 2015)

•  $\bar{p}$  fraction is flat on the rising  $e^+$ fraction branch E > 8 GeV




- $\,\circ\,$  Opposite trends on the declining  $e^+$  fraction branch  $E<8~{\rm GeV}$
- Both data sets relate to  $\underline{fractions}$ , thus eliminating all charge-sign independent aspects of propagation and acceleration
- Striking similarity with NL DSA solution, assuming most of  $e^-$  are accelerated to  $p^{-4}$  (standard DSA)

## Assumptions of the present model

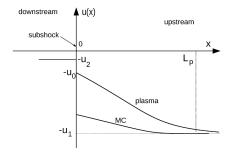
- A strong SNR propagates in "clumpy" molecular gas,  $n_{\rm H} \gtrsim 30 {\rm cm}^{-3}$ with filling factor  $f_V \sim 0.01$ , but mass  $\gg$  ambient plasma
- The SNR is not too far away, likely magnetically connected, thus making significant contribution to the local CR spectrum
- Other SNRs of this kind may or may not contribute
- Consider a moderately oblique (shock normal to the ambient magnetic field) portions of SNR shock surface
- High-energy protons are already accelerated to  $E\gtrsim 10^{12}eV$  to make a strong impact on the shock structure (CR back reaction, NL shock modification)
- Acceleration process thus transitioned into an efficient regime (in fact, required to, once  $E\gtrsim 1$  TeV,  $M\gtrsim 10-15$  and the fraction of accelerated protons  $\sim 10^{-4}-10^{-3})$

# Interaction of shock-acc'd CRs with gas clumps (MC)



• Shock-acc'd CRs form a precursor  $L_p \sim \kappa/u_1$ :  $\kappa$  - CR diff. coeff.,  $u_1$  shock velocity  $\kappa = \kappa_B$  $\simeq cr_g(p)/3$ ,  $r_g$  -gyro-radius • CR number density increases towards subshock

$$n_{CR}(x) = \frac{x_0 n_{CR}^0}{x_0 + x_{MC}}$$


• CR charge the MC at a relative rate (charge/discharge)

$$\eta = \frac{\dot{n}_{\rm CR} L_{\rm MC}}{V_{Te} n_0 + V_i n_i}$$

$$\sim rac{L_{
m MC}}{L_{
m CR}} \cdot rac{u_1 n_{
m CR}}{V_{Te} n_0 + V_i n_i}$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ 15 / 27

## Electrodynamics of CR-MC interaction



- MC move faster (in the shock frame) than the upstream flow (bow-shocks form)
- CR number density in MC increases explosively:

$$n_{CR}(t) = n_{CR}^{0} x_{0} / (x_{0} - u_{1}t)$$

- Reaction from the MC:
- buildup of electric field of a *positive* electrostatic potential
- minus-charge particles are attracted and stay inside MC during the subsequent shock crossing → evade acceleration
- plus-charge particles are expelled and injected into DSA
- charge-sign asimmetry of injection/acceleration

## Short digression into elementary plasma physics

• plasmas enforce almost "zero-tolerance" policy in regard to violation of their charge neutrality

#### Example

take  $1 \text{cm}^3$  of air ionize and separate p and e to distance r = 0.5 cm the resulting force

$$F = e^2 N^2 / r^2 \sim 10^{16} \; {
m lb}$$

As  $N \sim 10^{19}$ , I = 13.6 eV ionization energy only~ 100 Jouls

- similarly, <u>injection</u> of an external charge into plasma must lead to enormous electrostatic forces
- key words here are "separate" and "inject"
- need a powerful mechanism
- energetic CRs can do that

## Electrodynamics inside MC

• Two-fluid equations:

$$\frac{dV_i}{dt} = \frac{e}{m_i} E(x, t) - \nu_{in} V_i$$
$$\frac{dV_e}{dt} = -\frac{e}{m_e} E - \nu_{ei} (V_e - V_i)$$
$$\frac{\partial n_{e,i}}{\partial t} = -\frac{\partial}{\partial x} n_{e,i} V_{e,i}$$
$$n_e = n_i + n_{CR}$$

• Electric field is related to CR charging rate and ion outflow:

$$E(x,t) = \frac{m_e}{e} \nu_{ei} \frac{n_{CR}}{n_{CR} + n_i} \left( \frac{\dot{n}_{CR}}{n_{CR}} x + V_i \right)$$

<□ ト < 部 ト < 注 ト < 注 ト 注 の Q (~ 18 / 27)

## Self-similar solution

- Ions leave the MC symmetrically:  $V_i(x, t) = xV(t), E \propto V_i$ , assuming x = 0 being a midpoint of the field line threading the MC,  $|x| \le a$
- All other solutions converge to this form
- Electric field  $(-\infty < t < 0)$ :

$$E(x,t) \simeq rac{m_i}{e} a 
u_{in}^2 rac{x lpha}{\left(t_0 - t\right)^2} \left[1 + rac{lpha}{t_0 - t}
ight]$$

with dimensionless parameter that characterizes ion depletion

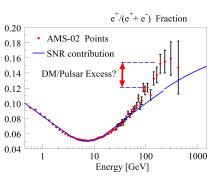
$$\frac{\alpha}{t_0} \sim \left(\frac{1eV}{T_e}\right)^2 \frac{n_{CR}^0}{n_n} \sqrt{\frac{m_n}{m_i} \left(\frac{m_n}{m_i}+1\right) \frac{m_e}{m_i}} \sim \Delta n_i/n_i \ll 1$$

(t measured in i - e collision times)

## Solution for electric field in MC, cont'd

• Maximum electric field (at MC edge)

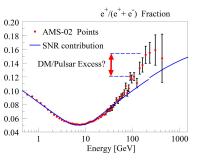
$$E_{
m max}\simeq rac{m_e}{e}u_1
u_{ei}rac{n_{CR}^0}{n_i}$$


• electrostatic potential with a maximum in the middle of the MC (x = 0) screens the MC interior from penetrating CR

$$\frac{e\phi_{\max}}{m_pc^2} \sim \frac{a}{1pc} \frac{u_1}{c} \frac{n_{CR}}{1cm^{-3}} \left(\frac{1eV}{T_e}\right)^{3/2}$$

- A 1-parcec MC ( $r_g$  of a PeV proton) is acceptable as it occupies only a  $u_1/c \ll 1$  fraction of CR precursor
- electric field is strong enough to keep low-energy CRs away from the MC interior
- keeps secondary  $e^-$  (and  $\bar{p}$ , to much lesser extent) inside, <u>ejects</u> secondary  $e^+$
- charge sign asymmetry of injection into DSA established

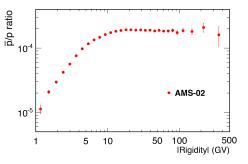
- secondary  $e^+$  are largely produced deep inside MC, preaccelrated in E and easily injected into DSA
- injection from many MCs occasionally crossing the shock occurs with a time-averaged rate Q(p, x)
- $\circ~Q$  decays sharply with x, the distance from the subshock
- it has a broad maximum at  $p \sim e \phi_{\rm max}/c$
- near subshock, CR number density sharply increases on account of GeV particles. They generate secondary  $e^{\pm}$  and  $\bar{p}$ , on the periphery of MC. The edge electric field then expels positively charged secondaries  $(e^+)$  and sucks in negatively charged ones, such as  $e^-$  and, to some extent,  $\bar{p}$
- $\bullet$  typical energy of expelled positrons  $< 1-2~{\rm GeV}$


- As the shock is modified, acceleration starts in its precursor since  $\partial u/\partial x \neq 0$
- However, most of the positrons are released from the MC near the subshock
- $\circ$  at lower energies, their spectrum is dominated by the subshock compression ratio,  $r_s=u_0/u_2$
- spectral index  $q = q_s \equiv 3r_s/(r_s 1)$  and the spectrum  $f_{e^+} \propto p^{-q_s}$ .
- at higher energies, positrons feel progressively higher flow compression (diffuse farther ahead of the subshock)
- $\,\circ\,$  their spectrum tends to a universal form with  $q\to 3.5$



• Shock structure is created by accelerated protons through their pressure distribution

- e<sup>+</sup> and other secondaries produced in pp collisions of shock accelerated CRs with MC gas, as well as e<sup>-</sup> can be treated as test particles in a given shock structure
- positively charged particles are enhanced while negatively charged suppressed because of charge-asymmetric injection from MC
- plausible assumption:  $e^+/e^$ injection rate  $\gg 1$ .


## Positron spectra cont'd



- In calculating  $e^+/(e^- + e^+)$ ,  $e^-$  are assumed to be from conventional shocks with  $p^{-4}$ source spectra
- $\implies e^+/(e^- + e^+)$  spectrum = proton spectrum in  $\rho^4 f(p)$ customary normalization

- background  $e^-$  (with  $p^{-4}$ spectrum) propagate distance similar to that of  $e^+$
- $\Rightarrow$ ratio  $e^+/(e^- + e^+)$  is de-propagated and probes directly into the positron accelerator!
- excess above the blue curve is not SNR – e.g., DM or pulsars
- as SNR contrib. is rising with E, constraints on DM signal in 200-400 GeV range are weaker compared to secondary  $e^+$ (decaying) without acceleration

## Antiprotons



• If most of  $\bar{p}$  and p come from the same source as  $e^+$  ( $\bar{p}$ generated in MCs ahead of SNR shock), the  $\bar{p}$  spectrum should be the same as p at  $E \gtrsim 10$  GeV

- Similarly,  $\bar{p}/p$  should be flat if  $\bar{p}$  are injected as secondaries into any SNR-DSA process
- Decline of  $\bar{\boldsymbol{p}}$  towards lower energies is consistent with electrostatic retention in MC
- This effect has not been quantified for  $\bar{\rho}$
- Solar modulation may also contribute to  $p \bar{p}$  difference at low energy
- Flat p̄/p should continue till p<sub>max</sub> then it should start declining (secondaries with no acceleration)

## Conclusions

- A weakly ionized dense molecular gas (MC) in SNR shock environment, illuminated by shock accelerated protons results in the following phenomena:
  - an MC of size  $L_{\rm MC}$  is charged (positively) by penetrating protons to~  $(L_{\rm MC}/pc) (V_{sh}/c) (1eV/T_e)^{3/2} (n_{CR}/cm^{-3}) {\rm GV}$
  - secondary positrons produced in *pp* collisions inside the MC are pre-accelerated by the MC electric potential and expelled from the MC to become a seed population for the DSA (get "injected")
  - <sup>③</sup> most of the negatively charged light secondaries  $(e^-)$ , and to some extent,  $\bar{p}$ , along with the primary electrons, remain locked inside the MC
- Assuming that the shock Mach number, proton injection rate, and cut-off momentum all exceed the thresholds of NL acceleration, the spectrum of injected positrons has concave form, which physically corresponds to a steepening due the subshock reduction, and flattening resulting from acceleration in the smooth part of the shock

- 1 the crossover energy is related to the change in proton transport (from  $\kappa \propto p^2$  to  $\kappa \propto p$ ) and respective contribution to the CR partial pressure in a mildly-relativistic regime. The crossover pinpoints the 8 GeV minimum in the  $e^+/(e^+ + e^-)$  fraction measured by AMS-02
- <sup>2</sup> due to the NL subshock reduction, the MC remains unshocked so that secondary  $\bar{p}$  and, in part, heavier nuclei accumulated in its interior largely evade shock acceleration
- 3 The AMS-02 positron excess in the range ~ 200 400GeV is not accounted for by the SNR positron spectrum and is available for alternative interpretations (DM, Pulsars, ???)